2.如圖,數(shù)軸上所表示的某不等式組的解集是( 。
A.x<-3B.x≥2C.-3<x≤2D.無解

分析 數(shù)軸的某一段上面,表示解集的線的條數(shù),與不等式的個(gè)數(shù)一樣,那么這段就是不等式組的解集.實(shí)心圓點(diǎn)包括該點(diǎn),空心圓圈不包括該點(diǎn),大于向右小于向左.兩個(gè)不等式的公共部分就是不等式組的解集.

解答 解:由圖可以看出,兩個(gè)解集無公共部分,所以無解,故選:D.

點(diǎn)評(píng) 本題考查的是在數(shù)軸上表示不等式的解集,不等式組的解集在數(shù)軸上表示的方法:把每個(gè)不等式的解集在數(shù)軸上表示出來(>,≥向右畫;<,≤向左畫),數(shù)軸上的點(diǎn)把數(shù)軸分成若干段,如果數(shù)軸的某一段上面表示解集的線的條數(shù)與不等式的個(gè)數(shù)一樣,那么這段就是不等式組的解集.有幾個(gè)就要幾個(gè).在表示解集時(shí)“≥”,“≤”要用實(shí)心圓點(diǎn)表示;“<”,“>”要用空心圓點(diǎn)表示.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

12.(1)如圖1,在矩形ABCD中,∠BOC=120°,AB=5,求BD的長(zhǎng).
(2)如圖2,在菱形ABCD中,對(duì)角線AC,BD交于點(diǎn)O,長(zhǎng)度分別是8和6,求菱形的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

13.解不等式組$\left\{\begin{array}{l}{2x+5≤3(x+2)①}\\{\frac{x-1}{2}<\frac{x}{3}②}\end{array}\right.$并把解集在數(shù)軸上表示出來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

10.如圖一,矩形ABCD中,AB=5cm,BC=4cm,E是BC上一點(diǎn),將△CDE沿DE折疊,使點(diǎn)C落在AB上一點(diǎn)F處,連結(jié)DF、EF.
(1)求BE的長(zhǎng)度;
(2)設(shè)點(diǎn)P、H、G分別在線段DE、BC、BA上,當(dāng)BP=CP且四邊形BGPH為矩形時(shí),請(qǐng)說明矩形BGPH的長(zhǎng)寬比為2:1,并求PE的長(zhǎng).(如圖二)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

17.已知一次函數(shù)y=(m+2)x+m,若y隨x的增大而增大,則m的取值范圍是m>-2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

7.下列各式計(jì)算正確的是(  )
A.(m-n)2=m2-n2B.(m+2)2=m2+2m+4C.($\frac{1}{2}$-m)2=$\frac{1}{4}$-m+m2D.(-m+n)2=m2+2mn+n2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

14.用換元法解分式方程:$\frac{x-1}{x}-\frac{3x}{x-1}$=2
解:設(shè)$\frac{x-1}{x}$=m,則原方程可化為m-$\frac{3}{m}$=2;去分母整理得:m2-2m-3=0
解得:m1=-1,m2=3即:$\frac{x-1}{x}$=-1或$\frac{x-1}{x}$=3;解得:x=$\frac{1}{2}$或x=-$\frac{1}{2}$
經(jīng)檢驗(yàn):x=$\frac{1}{2}$或 x=-$\frac{1}{2}$是原方程的解.故原方程的解為:x1=$\frac{1}{2}$,x2=-$\frac{1}{2}$.
請(qǐng)同學(xué)們借鑒上面換元法解分式方程的方法,先解下列方程,然后再化簡(jiǎn)求值:
已知a是方程${({\frac{x+2}{x-1}})^2}-({\frac{x+2}{x-1}})-2=0$的根,并求代數(shù)式$\frac{a-2}{a-1}÷({\frac{a+2}{a-2}-\frac{8a}{{{a^2}-4}}})$的值?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

11.計(jì)算:$\root{3}{-8}$-$\sqrt{10}$-$\sqrt{\frac{1}{4}}$+$\root{3}{0.125}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

12.在Rt△ABC中,∠BAC=90°,D是BC的中點(diǎn),E是AD的中點(diǎn),過點(diǎn)A作AF∥BC交BE的延長(zhǎng)線于點(diǎn)F.
(1)證明四邊形ADCF是菱形;
(2)若AC=4,AB=5,求菱形ADCF的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案