【題目】如圖,直線軸交于點,與軸交于點,拋物線經(jīng)過、兩點.

求拋物線的解析式;

如圖,點是直線上方拋物線上的一動點,當面積最大時,請求出點的坐標和面積的最大值?

的結(jié)論下,過點軸的平行線交直線于點,連接,點是拋物線對稱軸上的動點,在拋物線上是否存在點,使得以、、、為頂點的四邊形是平行四邊形?如果存在,請直接寫出點的坐標;如果不存在,請說明理由.

【答案】(1);(2)當時,即點的坐標是時,的面積最大,最大面積是;(3)點的坐標是、

【解析】

1)首先根據(jù)直線y=﹣x+3x軸交于點Cy軸交于點B,求出點B的坐標是(0,3),C的坐標是(4,0);然后根據(jù)拋物線y=ax2+x+c經(jīng)過B、C兩點,求出a\c的值是多少,即可求出拋物線的解析式

2)首先過點Ey軸的平行線EF交直線BC于點M,EFx軸于點F,然后設(shè)點E的坐標是(x,﹣x2+x+3),則點M的坐標是(x,﹣x+3),求出EM的值是多少;最后根據(jù)三角形的面積的求法,求出SABC,進而判斷出當△BEC面積最大時,E的坐標和△BEC面積的最大值各是多少即可

3)在拋物線上存在點P,使得以P、Q、AM為頂點的四邊形是平行四邊形.然后分三種情況討論,根據(jù)平行四邊形的特征求出使得以P、Q、A、M為頂點的四邊形是平行四邊形的點P的坐標是多少即可

1∵直線y=﹣x+3x軸交于點C,y軸交于點B,∴點B的坐標是(03),C的坐標是(4,0).

∵拋物線y=ax2+x+c經(jīng)過BC兩點,,解得,y=﹣x2+x+3

2)如圖1過點Ey軸的平行線EF交直線BC于點M,EFx軸于點F

∵點E是直線BC上方拋物線上的一動點,∴設(shè)點E的坐標是(x,﹣x2+x+3),則點M的坐標是(x,﹣x+3),EM=﹣x2+x+3﹣(﹣x+3)=﹣x2+x,SBEC=SBEM+SMEC

==×(﹣x2+x×4=﹣x2+3x=﹣x22+3

∴當x=2即點E的坐標是(2,3)時BEC的面積最大,最大面積是3

3)在拋物線上存在點P,使得以P、QA、M為頂點的四邊形是平行四邊形

①如圖2由(2),可得點M的橫坐標是2

∵點M在直線y=﹣x+3,∴點M的坐標是(2,).

又∵點A的坐標是(﹣2,0),AM==,AM所在的直線的斜率是;

y=﹣x2+x+3的對稱軸是x=1∴設(shè)點Q的坐標是(1,m),P的坐標是(x,﹣x2+x+3),

解得

x0,∴點P的坐標是(﹣3,﹣).

②如圖3,由(2),可得點M的橫坐標是2

∵點M在直線y=﹣x+3,∴點M的坐標是(2).

又∵點A的坐標是(﹣2,0),AM==,AM所在的直線的斜率是;

y=﹣x2+x+3的對稱軸是x=1,∴設(shè)點Q的坐標是(1m),P的坐標是(x,﹣x2+x+3),

解得

x0,∴點P的坐標是(5,﹣).

③如圖4,由(2),可得點M的橫坐標是2

∵點M在直線y=﹣x+3,∴點M的坐標是(2,).

又∵點A的坐標是(﹣2,0),AM==

y=﹣x2+x+3的對稱軸是x=1,∴設(shè)點Q的坐標是(1,m),P的坐標是(x,﹣x2+x+3),,解得∴點P的坐標是(﹣1,).

綜上,可得在拋物線上存在點P,使得以P、QA、M為頂點的四邊形是平行四邊形P的坐標是(﹣3,﹣)、(5,﹣)、(﹣1,).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,山頂建有一座鐵塔,塔高BC=80米,測量人員在一個小山坡的P處測得塔的底部B點的仰角為45°,塔頂C點的仰角為60°.已測得小山坡的坡角為30°,坡長MP=40米.求山的高度AB(精確到1米).(參考數(shù)據(jù):1.414,1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠A=∠B90°EAB上的一點,且AEBC,∠1=∠2

求證:△CED是等腰直角三角形

證明:∵∠1=∠2   

EC   (在一個三角形中,等角對等邊)

∵∠A=∠B90°,AEBC

∴△AED≌△BCE   

∴∠AED=∠      

∵∠BCE+BEC90°

   +BEC90°(等量代換)

∴∠DEC90°

∴△CED是等腰直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道:x26x(x26x+9)9(x3)29;﹣x2+10=﹣(x210x+25)+25=﹣(x5)2+25,這一種方法稱為配方法,利用配方法請解以下各題:

(1)按上面材料提示的方法填空:a24a      .﹣a2+12a      

(2)探究:當a取不同的實數(shù)時在得到的代數(shù)式a24a的值中是否存在最小值?請說明理由.

(3)應(yīng)用:如圖.已知線段AB6MAB上的一個動點,設(shè)AMx,以AM為一邊作正方形AMND,再以MBMN為一組鄰邊作長方形MBCN.問:當點MAB上運動時,長方形MBCN的面積是否存在最大值?若存在,請求出這個最大值;否則請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】當三角形中一個內(nèi)角是另一個內(nèi)角2倍時,則稱此三角形為“倍角三角形”,其中角稱為“倍角”.若“倍角三角形”中有一個內(nèi)角為36°,則這個“倍角三角形”的“倍角”的度數(shù)可以是________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,ABAC,點D在邊BC上,點E在邊AC上,且ADAE

1)如圖1,當AD是邊BC上的高,且∠BAD30°時,求∠EDC的度數(shù);

2)如圖2,當AD不是邊BC上的高時,請判斷∠BAD與∠EDC之間的關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,己知直線交于點、點,與交于點,直線軸交于點,且,則________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是某同學(xué)對多項式(x24x+2)(x24x+6+4進行因式分解的過程

解:設(shè)x24xy,

原式=(y+2)(y+6+4 (第一步)

y2+8y+16。ǖ诙剑

=(y+42(第三步)

=(x24x+42(第四步)

1)該同學(xué)第二步到第三步運用了因式分解的   (填序號).

A.提取公因式 B.平方差公式

C.兩數(shù)和的完全平方公式 D.兩數(shù)差的完全平方公式

2)該同學(xué)在第四步將y用所設(shè)中的x的代數(shù)式代換,得到因式分解的最后結(jié)果.這個結(jié)果是否分解到最后?   .(填)如果否,直接寫出最后的結(jié)果   

3)請你模仿以上方法嘗試對多項式(x22x)(x22x+2+1進行因式分解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩個大小不同的等腰直角三角形三角板如圖1所示放置,2是由它抽象出的幾何圖形,B. C.E在同一條直線上,連結(jié)DC.

(1)請在圖2中找出與ABE全等的三角形,并給予證明;

(2)證明:DCBE.

查看答案和解析>>

同步練習(xí)冊答案