【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC三個頂點(diǎn)都在格點(diǎn)上,點(diǎn)A、B.C的坐標(biāo)分別為A(-1,3),B(-3,1),C(-1,1).請解答下列問題:
(1)畫出△ABC關(guān)于y軸對稱的△A1B1C1,并寫出B1的坐標(biāo);
(2)畫出△A1B1C1繞點(diǎn)C1順時針旋轉(zhuǎn)90°后得到的△A2B2C2;
(3)求出點(diǎn)A1走過的路徑長.
【答案】(1)B1(3,1);(2)答案見解析;(3)π
【解析】
(1)根據(jù)網(wǎng)格結(jié)構(gòu)找出點(diǎn)A、B、C關(guān)于y軸的對稱點(diǎn)A1、B1、C1的位置,然后順次連接并寫出B1的坐標(biāo)即可;
(2)根據(jù)旋轉(zhuǎn)的定義作出△A1B1C1三頂點(diǎn)繞點(diǎn)C1順時針旋轉(zhuǎn)90°后得到的對應(yīng)點(diǎn),然后順次連接即可;
(3)根據(jù)弧長公式列式計算即可得出答案.
(1)△A1B1C1如圖所示,B1(3,1);
(2)△A2B2C2如圖所示;
(3)點(diǎn)A1走過的路徑長為:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某數(shù)學(xué)活動小組要測量山坡上的電線桿PQ的高度.他們采取的方法是:先在地面上的點(diǎn)A處測得桿頂端點(diǎn)P的仰角是45°,再向前走到B點(diǎn),測得桿頂端點(diǎn)P和桿底端點(diǎn)Q的仰角分別是60°和30°,這時只需要測出AB的長度就能通過計算求出電線桿PQ的高度.你同意他們的測量方案嗎?若同意,畫出計算時的圖形,簡要寫出計算的思路,不用求出具體值;若不同意,提出你的測量方案,并簡要寫出計算思路.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】抽屜里放有4只白襪子和2只黑襪子.
(1)從中任意摸出1只襪子,記下顏色后放回,攪勻,再摸出1只襪子,摸出的兩只襪子顏色相同的概率是多少.
(2)若第一次摸出不放回,摸出的兩只襪子顏色相同的概率是多少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A(n,﹣2),B(1,4)是一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象的兩個交點(diǎn),直線AB與y軸交于點(diǎn)C.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)求△AOC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:如果M個不同的正整數(shù),對其中的任意兩個數(shù),這兩個數(shù)的積能被這兩個數(shù)的和整除,則稱這組數(shù)為M個數(shù)的自然數(shù)組,如(3,6)為兩個數(shù)的自然數(shù)組,因?yàn)椋?/span>3×6)能被(3+6)整除;又如(15,30,60)為三個數(shù)的自然數(shù)組,因?yàn)椋?/span>15×30)能被(15+30)整除,(15×60)能被(15+60)整除,(30×60)能被(30+60)整除…
(1)求證:2n和n(n﹣2)(n≥3,n為整數(shù))組成的數(shù)組是兩個數(shù)的自然數(shù)組;
(2)若(4a,5a,6a)是三個數(shù)的自然數(shù)組,求滿足條件的三位正整數(shù)a,并判斷(4a+5,5a+5,6a+5)是否為自然數(shù)組.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(-2,0),OB=OA,且∠AOB=120°.
(1)求經(jīng)過A、O、B三點(diǎn)的拋物線的解析式;
(2)在(1)中拋物線的對稱軸上是否存在點(diǎn)C,使△OBC的周長最小?若存在,求出點(diǎn)C的坐標(biāo);若不存在,請說明理由;
(3)若點(diǎn)M為拋物線上一點(diǎn),點(diǎn)N為對稱軸上一點(diǎn),是否存在點(diǎn)M、N使得A、O、M、N構(gòu)成的四邊形是平行四邊形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線 y=ax2﹣5ax+c 交 x 軸于點(diǎn) A,點(diǎn) A 的坐標(biāo)為(4,0).
(1)用含 a 的代數(shù)式表示 c.
(2)當(dāng) a=時,求 x 為何值時 y 取得最小值,并求出 y 的最小值.
(3)當(dāng) a=時,求 0≤x≤6 時 y 的取值范圍.
(4)已知點(diǎn) B 的坐標(biāo)為(0,3),當(dāng)拋物線的頂點(diǎn)落在△AOB 外接圓內(nèi)部時,直接寫出 a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某物流公司要把3000噸貨物從M市運(yùn)到W市.(每日的運(yùn)輸量為固定值)
(1)從運(yùn)輸開始,每天運(yùn)輸?shù)呢浳飮崝?shù)y(單位:噸)與運(yùn)輸時間x(單位:天)之間有怎樣的函數(shù)關(guān)系式?
(2)因受到沿線道路改擴(kuò)建工程影響,實(shí)際每天的運(yùn)輸量比原計劃少20%,以致推遲1天完成運(yùn)輸任務(wù),求原計劃完成運(yùn)輸任務(wù)的天數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,直線PQ同側(cè)有兩點(diǎn)M,N,點(diǎn)T在直線PQ上,若∠MTP=∠NTQ,則稱點(diǎn)T為M,N在直線PQ上的投射點(diǎn).
(1)如圖②,在Rt△ABC中,∠B=60°,D為斜邊AB的中點(diǎn),E為AC的中點(diǎn).求證:點(diǎn)D為C,E在直線AB上的投射點(diǎn);
(2)如圖③,在正方形網(wǎng)格中,已知點(diǎn)A,B,C三點(diǎn)均在格點(diǎn)上,請僅用沒有刻度的直尺在AC上畫出點(diǎn)P,在BC上畫出點(diǎn)Q,使A,P在BC上的投射點(diǎn)Q滿足CQ=2BQ;
(3)如圖④,在Rt△ABC中,∠C=90°,AC=BC,在AB,BC邊上是否分別存在點(diǎn)D,E,使點(diǎn)D為E,C在AB上的投射點(diǎn),點(diǎn)E為A,D在BC上的投射點(diǎn)?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com