【題目】如圖①,直線PQ同側(cè)有兩點M,N,點T在直線PQ上,若∠MTPNTQ,則稱點TM,N在直線PQ上的投射點.

(1)如圖②,在RtABC中,∠B=60°,D為斜邊AB的中點,EAC的中點.求證:點DC,E在直線AB上的投射點;

(2)如圖③,在正方形網(wǎng)格中,已知點A,BC三點均在格點上,請僅用沒有刻度的直尺在AC上畫出點P,在BC上畫出點Q,使A,PBC上的投射點Q滿足CQ=2BQ;

(3)如圖④,在RtABC中,∠C=90°,ACBC,在AB,BC邊上是否分別存在點D,E,使點DE,CAB上的投射點,點EADBC上的投射點?若存在,求出的值;若不存在,請說明理由.

【答案】(1)證明見解析;(2)畫圖見解析;(3)存在,

【解析】

(1)先求出∠BDC=60°,進(jìn)而判斷出∠ADE=∠B=60°,即可得出結(jié)論;

(2)根據(jù)對稱性即可作出圖形;

(3)根據(jù)對稱和相似作出圖形,再用相似三角形的性質(zhì)即可得出結(jié)論.

1)∵在RtABC中,D為斜邊AB的中點,

CD=BD=BC,

又∵∠B=60°,

∴∠BDC=60°,

D,E分別為AB,AC的中點,

DEAC,

∴∠ADE=B=60°,

∴∠ADE=BDC,

∴點DC,E在直線AB上的投射點;

(2)如圖③,

作法:

1、在格點上取點G,H,連接HGBCQ,(理由:△BQG∽△HQC)

2、作點A關(guān)于BC的對稱點A',連接A'Q并延長交ACP,(AQB=A'QB=PQC)

即:點P就是所求作的點;

(3)存在,

如圖④,作點C關(guān)于AB的對稱點C′,連接BC',AC',

則四邊形ACBC′為正方形,

作點A關(guān)于BC的對稱點A′,連接A'C'ABD,交BCE,

即:點D,E是所求作的點,

C′,D,E,A在同一直線上,

CA′=CA=C′A=C′B=BC,CD=C′D,

∴△C′BE≌△A′CE,

BE=BC=C′A,

AC′BC,

∴△BDE∽△ADC′,

,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC三個頂點都在格點上,點ABC的坐標(biāo)分別為A(-1,3),B(-3,1),C(-1,1).請解答下列問題:

(1)畫出ABC關(guān)于y軸對稱的A1B1C1,并寫出B1的坐標(biāo);

(2)畫出A1B1C1繞點C1順時針旋轉(zhuǎn)90°后得到的A2B2C2;

(3)求出點A1走過的路徑長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,AC平分∠DAB,AC2=ABADADC=90°,EAB的中點.

1)求證:ADC∽△ACB;

2CEAD有怎樣的位置關(guān)系?試說明理由;

3)若AD=4AB=6,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtACB中,ACB=90°,以點A為圓心,AC長為半徑的圓交AB于點D,BA的延長線交A于點E,連接CE,CD,F(xiàn)是A上一點,點F與點C位于BE兩側(cè),且∠FAB=∠ABC,連接BF.

(1)求證:∠BCD=∠BEC;

(2)若BC=2,BD=1,求CE的長及sinABF的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個不透明的袋子中裝有除顏色外其余均相同的5個小球,其中紅球3個,黑球2個.

(1)若先從袋中取出xx>0)個紅球,再從袋子中隨機摸出1個球,將摸出黑球記為事件A,若A為必然事件,則x的值為   ;

(2)若從袋中隨機摸出2個球,正好紅球、黑球各1個,用畫樹狀圖或列表法求這個事件的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為深化課程改革,某校為學(xué)生開設(shè)了形式多樣的社團課程,為了解部分社團課程在學(xué)生中最受歡迎的程度,學(xué)校隨機抽取七年級部分學(xué)生進(jìn)行調(diào)查,從A:文學(xué)簽賞,B:科學(xué)探究,C:文史天地,D:趣味數(shù)學(xué)四門課程中選出你喜歡的課程(被調(diào)查者限選一項),并將調(diào)查結(jié)果繪制成兩個不完整的統(tǒng)計圖,如圖所示,根據(jù)以上信息,解答下列問題:

(1)本次調(diào)查的總?cè)藬?shù)為多少人,扇形統(tǒng)計圖中A部分的圓心角是多少度.

(2)請補全條形統(tǒng)計圖.

(3)根據(jù)本次調(diào)查,該校七年級840名學(xué)生中,估計最喜歡“科學(xué)探究”的學(xué)生人數(shù)為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某景區(qū)商店以2元的批發(fā)價進(jìn)了一批紀(jì)念品.經(jīng)調(diào)查發(fā)現(xiàn),每個定價3元,每天可以能賣出500件,而且定價每上漲0.1元,其銷售量將減少10件.根據(jù)規(guī)定:紀(jì)念品售價不能超過批發(fā)價的2.5倍.

1)當(dāng)每個紀(jì)念品定價為3.5元時,商店每天能賣出________件;

2)如果商店要實現(xiàn)每天800元的銷售利潤,那該如何定價?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,反比例函數(shù)y=﹣在第二象限的圖象上有一點A,過點AABx軸于點B,則SAOB_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AC是某市環(huán)城路的一段,AE,BF,CD都是南北方向的街道,其與環(huán)城路AC的交叉路口分別是A,B,C.經(jīng)測量花卉世界D位于點A的北偏東45°方向,點B的北偏東30°方向上,AB=2km,DAC=15°.

(1)求B,D之間的距離;

(2)求C,D之間的距離.

查看答案和解析>>

同步練習(xí)冊答案