【題目】如圖,四邊形是正方形,是等邊三角形,為對(duì)角線(xiàn)(不含點(diǎn))上任意一點(diǎn),將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到,連接、、.設(shè)點(diǎn)的坐標(biāo)為.
(1)若建立平面直角坐標(biāo)系,滿(mǎn)足原點(diǎn)在線(xiàn)段上,點(diǎn),.且(),則點(diǎn)的坐標(biāo)為 ,點(diǎn)的坐標(biāo)為 ;請(qǐng)直接寫(xiě)出點(diǎn)縱坐標(biāo)的取值范圍是 ;
(2)若正方形的邊長(zhǎng)為2,求的長(zhǎng),以及的最小值. (提示:連結(jié):,)
【答案】(1),,;(2),.
【解析】
(1)如圖1,以直線(xiàn)BD為x軸,直線(xiàn)AC為y軸,建立平面直角坐標(biāo)系,根據(jù)正方形的性質(zhì)得到OA=OB=OC=OD,由點(diǎn)B(-1,0),A(0,1),于是得到D(1,0),C(0,-1);過(guò)N作NH⊥BD于h,根據(jù)旋轉(zhuǎn)的性質(zhì)得到∠NBH=60°,BM=BN,求得NH=BN=t,于是得到結(jié)論;
(2)如圖所示,連接MN,過(guò)E作EH⊥BC,交CB的延長(zhǎng)線(xiàn)于H,由旋轉(zhuǎn)的性質(zhì)得到BM=BN,∠NBM=60°,求得△BMN是等邊三角形,求得MN=BM,根據(jù)等邊三角形的性質(zhì)得到BE=BA,∠ABE=60°,求得∠ABM=∠EBN,根據(jù)全等三角形的性質(zhì)得到AM=EN,求得AM+BM+CM=EN+MN+CM,當(dāng)E,N,M,C在同一直線(xiàn)上時(shí),AM+BM+CN的最小值是CE的長(zhǎng),解直角三角形即可得到結(jié)論.
解:(1)如圖1,以直線(xiàn)為軸,直線(xiàn)為軸,建立平面直角坐標(biāo)系,
∵四邊形是正方形
∴
∵點(diǎn),
∴,
過(guò)作于
∴
∵將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到,
∴
∴
∵
∴點(diǎn)縱坐標(biāo)的取值范圍是
故答案為:,,
(2)如圖所示,連接,過(guò)作,交的延長(zhǎng)線(xiàn)于,
由旋轉(zhuǎn)可得,,,
∴是等邊三角形,
∴
∵是等邊三角形
∴
∴
∴≌()
∴
∴
∴當(dāng),,,在同一直線(xiàn)上時(shí),的最小值是的長(zhǎng),
又∵,
∴
∴中,
∴
∴
∴中,
∴的最小值為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=﹣2x的圖象與反比例函數(shù)y=的圖象的一個(gè)交點(diǎn)為A(﹣1,n)
(1)求反比例函數(shù)y=的表達(dá)式.
(2)若兩函數(shù)圖象的另一交點(diǎn)為B,直接寫(xiě)出B的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小林有3張撲克牌,小麗有2張撲克牌,撲克牌上的數(shù)字如圖所示。兩人用這些撲克牌做游戲,他們分別從自己的撲克牌中隨機(jī)抽取一張。
(1)求兩人抽取的撲克牌上的數(shù)字之積為奇數(shù)的概率;(用“列表”或“畫(huà)樹(shù)狀圖”的方法說(shuō)明);
(2)若兩人抽取的撲克牌上的數(shù)字之積為奇數(shù),則小林勝,否則小麗勝,這個(gè)游戲公平嗎?若不公平,請(qǐng)修改游戲規(guī)則,使得游戲公平;若公平,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形中,,過(guò)點(diǎn)作于點(diǎn),延長(zhǎng)交于點(diǎn),連接,若,線(xiàn)段的長(zhǎng)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)為坐標(biāo)原點(diǎn),拋物線(xiàn)與軸交于、兩點(diǎn),頂點(diǎn)在軸的正半軸上,且.
(1)如圖①,求拋物線(xiàn)的解析式;
(2)如圖②,連接,過(guò)點(diǎn)作的平行線(xiàn),交第四象限的拋物線(xiàn)于點(diǎn),求點(diǎn)的坐標(biāo);
(3)在(2)的條件下,點(diǎn)在第四象限的拋物線(xiàn)上,過(guò)點(diǎn)作于點(diǎn),直線(xiàn)交軸于點(diǎn),過(guò)點(diǎn)作軸的垂線(xiàn),垂足為,點(diǎn)在的延長(zhǎng)線(xiàn)上,連接、,且,若,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)(為常數(shù),且)的圖像與反比例函數(shù)的圖像交于,兩點(diǎn).
(1)求一次函數(shù)的表達(dá)式;
(2)若將直線(xiàn)向下平移個(gè)單位長(zhǎng)度后與反比例函數(shù)的圖像有且只有一個(gè)公共點(diǎn),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線(xiàn)M:y=ax2+bx+c(a≠0)經(jīng)過(guò)A(﹣1,0),且頂點(diǎn)坐標(biāo)為B(0,1).
(1)求拋物線(xiàn)M的函數(shù)表達(dá)式;
(2)設(shè)F(t,0)為x軸正半軸上一點(diǎn),將拋物線(xiàn)M繞點(diǎn)F旋轉(zhuǎn)180°得到拋物線(xiàn)M1.
①拋物線(xiàn)M1的頂點(diǎn)B1的坐標(biāo)為 ;
②當(dāng)拋物線(xiàn)M1與線(xiàn)段AB有公共點(diǎn)時(shí),結(jié)合函數(shù)的圖象,求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】新春佳節(jié),電子鞭炮因其安全、無(wú)污染開(kāi)始走俏.某商店經(jīng)銷(xiāo)一種電子鞭炮,已知這種電子鞭炮的成本價(jià)為每盒80元,市場(chǎng)調(diào)查發(fā)現(xiàn),該種電子鞭炮每天的銷(xiāo)售量y(盒)與銷(xiāo)售單價(jià)x(元)有如下關(guān)系:y=﹣2x+320(80≤x≤160).設(shè)這種電子鞭炮每天的銷(xiāo)售利潤(rùn)為w元.
(1)求w與x之間的函數(shù)關(guān)系式;
(2)該種電子鞭炮銷(xiāo)售單價(jià)定為多少元時(shí),每天的銷(xiāo)售利潤(rùn)最大?最大利潤(rùn)是多少元?
(3)該商店銷(xiāo)售這種電子鞭炮要想每天獲得2400元的銷(xiāo)售利潤(rùn),又想買(mǎi)得快.那么銷(xiāo)售單價(jià)應(yīng)定為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)的圖象與x軸交于A(﹣3,0)和B(1,0)兩點(diǎn),交y軸于點(diǎn)C(0,3),點(diǎn)C、D是二次函數(shù)圖象上的一對(duì)對(duì)稱(chēng)點(diǎn),一次函數(shù)的圖象過(guò)點(diǎn)B、D.
(1)請(qǐng)直接寫(xiě)出D點(diǎn)的坐標(biāo).
(2)求二次函數(shù)的解析式.
(3)根據(jù)圖象直接寫(xiě)出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com