【題目】如圖所示,已知ADBC,ABBC,CDDECD=ED,AD=6BC=9,則ADE的面積為_____

【答案】9

【解析】

知道AD的長,只要求出AD邊上的高,就可以求出△ADE的面積;過點DDGBCG,過點EEFADAD的延長線于F,構(gòu)造出△EDF≌△CDG,求出GC的長,即為EF的長,利用三角形的面積公式解答即可.

過點DDGBCG,過點EEFADAD的延長線于F,如圖所示:

則四邊形ABGD是矩形,

AD=BG,

∵∠EDF+FDC=90°

GDC+FDC=90°,

∴∠EDF=GDC

EDFCDG中,

,

∴△EDF≌△CDGAAS),

EF=CG=BC-BG=BC-AD=9-6=3,

SADE=ADEF=×6×3=9,

故答案為:9

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在 中,, 的垂直平分線交 于點 ,交 于點 ,連接

1)求 的周長;

2)若 ,求 的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:有一塊三角形狀的土地平均分給四戶人家,現(xiàn)有四種不同的分法,如圖中,D、E、F分別是BC、AC、AB的中點,G、H分別是BF、AF的中點,其中正確的分法有  

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在ABC中,∠BAC=120°ADBCD,且AB+BD=DC,則∠C的大小是(

A.20°B.30°C.25°D.15°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將半徑為2,圓心角為120°的扇形OAB繞點A逆時針旋轉(zhuǎn)60°,點O,B的對應(yīng)點分別為O′,B′,連接BB′,則圖中陰影部分的面積是( )

A. B. 2 C. 2 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是一種斜挎包,其挎帶由雙層部分、單層部分和調(diào)節(jié)扣構(gòu)成.小敏用后發(fā)現(xiàn),通過調(diào)節(jié)扣加長或縮短單層部分的長度,可以使挎帶的長度(單層部分與雙層部分長度的和,其中調(diào)節(jié)扣所占的長度忽略不計)加長或縮短.設(shè)單層部分的長度為xcm,雙層部分的長度為ycm,經(jīng)測量,得到如下數(shù)據(jù):

單層部分的長度x(cm)

4

6

8

10

150

雙層部分的長度y(cm)

73

72

71

(1)根據(jù)表中數(shù)據(jù)的規(guī)律,完成以下表格,并直接寫出y關(guān)于x的函數(shù)解析式;

(2)根據(jù)小敏的身高和習(xí)慣,挎帶的長度為120cm時,背起來正合適,請求出此時單層部分的長度;

(3)設(shè)挎帶的長度為lcm,求l的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是矩形,,,點P是對角線AC上的動點不與點A,C重合,連接PD,作交射線BC于點E,以線段PD,PE為鄰邊作矩形PEFD.

線段PD的最小值為______;

求證:,并求矩形PEFD面積的最小值;

是否存在這樣的點P,使得是等腰三角形?若存在,請求出PE的長;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是邊長為6 cm的等邊三角形,動點PA出發(fā),以3 cm/s的速度,沿A-B-CC運動,同時,動點QC出發(fā)沿CA方向以1 cm/s的速度向A運動,當(dāng)其中一點運動到終點時,兩點同時停止運動.設(shè)運動時間為t秒,當(dāng)t= ____s,△APQ是直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某水果商從批發(fā)市場用8000元購進(jìn)了大櫻桃和小櫻桃各200千克,大櫻桃的進(jìn)價比小櫻桃的進(jìn)價每千克多20元.大櫻桃售價為每千克40元,小櫻桃售價為每千克16元.

(1)大櫻桃和小櫻桃的進(jìn)價分別是每千克多少元?銷售完后,該水果商共賺了多少元錢?

(2)該水果商第二次仍用8000元錢從批發(fā)市場購進(jìn)了大櫻桃和小櫻桃各200千克,進(jìn)價不變,但在運輸過程中小櫻桃損耗了20%.若小櫻桃的售價不變,要想讓第二次賺的錢不少于第一次所賺錢的90%,大櫻桃的售價最少應(yīng)為多少?

查看答案和解析>>

同步練習(xí)冊答案