【題目】如圖,△ABC是邊長(zhǎng)為6 cm的等邊三角形,動(dòng)點(diǎn)PA出發(fā),以3 cm/s的速度,沿A-B-CC運(yùn)動(dòng),同時(shí),動(dòng)點(diǎn)QC出發(fā)沿CA方向以1 cm/s的速度向A運(yùn)動(dòng),當(dāng)其中一點(diǎn)運(yùn)動(dòng)到終點(diǎn)時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒,當(dāng)t= ____s,△APQ是直角三角形.

【答案】

【解析】

分析題意可知,需分兩種情況討論,①當(dāng)∠QPA=90°時(shí),②當(dāng)∠PQA=90°時(shí),分別作出圖形,利用含30°角的直角三角形的性質(zhì)列方程求解即可.

解:由題意可得,分兩種情況討論,

①當(dāng)∠QPA=90°時(shí),如圖:

AC=6CQ=t,AP=3t,

AQ=6-t,

∵∠A=60°,

AQ=2AP,即6-t=2×3t

解得:t=;

②當(dāng)∠PQA=90°時(shí),如圖:

CQ=t,CP=12-3t,∠C=60°

CP=2CQ,即12-3t=2t

解得:t=,

綜上所述,當(dāng)t=秒時(shí),APQ是直角三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,AD是高,AE是角平分線(xiàn),已知∠ACB = 70°,EAD = 15°,則∠ABC的度數(shù)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知ADBC,ABBCCDDE,CD=ED,AD=6,BC=9,則ADE的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,∠ABC、∠ACB的平分線(xiàn)相交于O,MN過(guò)點(diǎn)O且與BC平行.△ABC的周長(zhǎng)為20,△AMN的周長(zhǎng)為12,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC≌△ADE,BCDE交于點(diǎn)F.若∠BAE60°∠DAC160°,則∠DFC的度數(shù)為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,OP平分∠AOBPAOA、PBOB,垂足分別為A、B,下列結(jié)論成立的是( )

PA=PB;②PO平分∠APB;③OA=OB;④AB垂直平分OP

A.①③B.①②③C.②③D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,點(diǎn)邊上的一個(gè)動(dòng)點(diǎn)(點(diǎn)不與點(diǎn),點(diǎn)重合),在上取一點(diǎn),且∠CDE=50°

1)當(dāng)時(shí),求證:

2)當(dāng)是等腰三角形時(shí),的度數(shù)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于x的一元二次方程x2+(2m+1)x+m2﹣1=0有兩個(gè)不相等的實(shí)數(shù)根.

(1)求m的取值范圍;

(2)寫(xiě)出一個(gè)滿(mǎn)足條件的m的值,并求此時(shí)方程的根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, ABC中,∠ ABC90°,ABBC,D在邊 AC上,AE┴ BD E

(1) 如圖 1,作 CF BD F,求證:CFAEEF;

(2) 如圖 2,若 BCCD,求證:BD=2AE ;

(3) 如圖3,作 BM BE,且 BMBEAE2,EN4,連接 CM BE N,請(qǐng)直接寫(xiě)出BCM的面積為______

查看答案和解析>>

同步練習(xí)冊(cè)答案