【題目】中,,,.長(zhǎng)為的線段在的邊上沿方向以的速度向點(diǎn)運(yùn)動(dòng)(運(yùn)動(dòng)前點(diǎn)與點(diǎn)重合).過(guò),分別作的垂線交直角邊于,兩點(diǎn),線段運(yùn)動(dòng)的時(shí)間為.
若的面積為,寫(xiě)出與的函數(shù)關(guān)系式(寫(xiě)出自變量的取值范圍);
線段運(yùn)動(dòng)過(guò)程中,四邊形有可能成為矩形嗎?若有可能,求出此時(shí)t的值;若不可能,說(shuō)明理由;
為何值時(shí),以,,為頂點(diǎn)的三角形與相似?
【答案】或;時(shí),四邊形為矩形;(3)當(dāng)或時(shí),以,,為頂點(diǎn)的三角形與相似.
【解析】
(1)分兩種情況,點(diǎn)P可以在AC上時(shí)和當(dāng)點(diǎn)P在BC上時(shí),利用三角函數(shù)分別用含t的代數(shù)式表示出PM,AM,再用S△APM=AMPM得出y與t的函數(shù)關(guān)系式.
(2)當(dāng)PM=QN時(shí),四邊形MNQP為矩形,建立含t的方程,求得t的值;
(3)以C,P,Q為頂點(diǎn)的三角形與△ABC相似有兩種情況,△PQC∽△ABC時(shí)和△QPC∽△ABC,分別相似三角形的判定和性質(zhì),求得相對(duì)應(yīng)的t的值.
當(dāng)點(diǎn)在上時(shí),∵,∴.
∴.
當(dāng)點(diǎn)在上時(shí),.
.
∵,∴.∴.
∴.
由條件知,若四邊形為矩形,需,即,
∴.∴當(dāng)時(shí),四邊形為矩形.
由知,當(dāng)時(shí),四邊形為矩形,此時(shí),
∴.
除此之外,當(dāng)時(shí),,此時(shí).
∵,
∴.
∴.
∵,
∴.
又∵,
∴.
∴,.
∴當(dāng)或時(shí),以,,為頂點(diǎn)的三角形與相似.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD的內(nèi)角∠DCB與外角∠ABE的平分線相交于點(diǎn)F.
(1)若BF∥CD,∠ABC=80°,求∠DCB的度數(shù);
(2)已知四邊形ABCD中,∠A=105,∠D=125,求∠F的度數(shù);
(3)猜想∠F、∠A、∠D之間的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)不透明的盒子里裝有30個(gè)除顏色外其它均相同的球,其中紅球有m個(gè),白球有3m個(gè),其它均為黃球.現(xiàn)小李從盒子里隨機(jī)摸出一個(gè)球,若是紅球,則小李獲勝;小李把摸出的球放回盒子里搖勻,由小馬隨機(jī)摸出一個(gè)球,若為黃球,則小馬獲勝.
(1)當(dāng)m=4時(shí),求小李摸到紅球的概率是多少?
(2)當(dāng)m為何值時(shí),游戲?qū)﹄p方是公平的?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商家銷(xiāo)售一種成本為每件元的商品.據(jù)市場(chǎng)調(diào)查分析,如果按每件元銷(xiāo)售,一周能售出件;若銷(xiāo)售單價(jià)每漲元,每周銷(xiāo)售量就減少件.設(shè)銷(xiāo)售單價(jià)為元,一周的銷(xiāo)售量為件.
求與之間的函數(shù)表達(dá)式,并寫(xiě)出自變量的取值范圍;
設(shè)一周的銷(xiāo)售利潤(rùn)為元,求關(guān)于的函數(shù)表達(dá)式,并求出商家銷(xiāo)售該商品的最大利潤(rùn);
若該商家每周投入此商品的成本不超過(guò)元,問(wèn)銷(xiāo)售單價(jià)定位多少時(shí),銷(xiāo)售該商品一周的利潤(rùn)能達(dá)到元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】菱形的邊長(zhǎng)為,,、分別是、的中點(diǎn),、分別在、上,且.
求證:四邊形是平行四邊形;
當(dāng)四邊形是菱形時(shí),求的長(zhǎng);
當(dāng)四邊形是矩形時(shí),求此時(shí)點(diǎn)到點(diǎn)的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】李老師為了了解學(xué)生暑期在家的閱讀情況,隨機(jī)調(diào)查了20名學(xué)生某一天的閱讀小時(shí)數(shù),具體情況統(tǒng)計(jì)如下:
閱讀時(shí)間 (小時(shí)) | 2 | 2.5 | 3 | 3.5 | 4 |
學(xué)生人數(shù)(名) | 1 | 2 | 8 | 6 | 3 |
則關(guān)于這20名學(xué)生閱讀小時(shí)數(shù)的說(shuō)法正確的是( 。
A. 眾數(shù)是8 B. 中位數(shù)是3 C. 平均數(shù)是3 D. 方差是0.34
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AC=AN,BC=BM,則∠MCN=( )
A. 30°B. 45°C. 60°D. 55°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的中線,E是AB邊上一點(diǎn),過(guò)點(diǎn)C作CF∥AB交ED的延長(zhǎng)線于點(diǎn)F.
(1)求證:△BDE≌△CDF.
(2)當(dāng)AD⊥BC,AE=2,CF=4時(shí),求AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線與軸交于點(diǎn),與軸交于,兩點(diǎn)(點(diǎn)在軸正半軸上),為等腰直角三角形,且面積為,現(xiàn)將拋物線沿方向平移,平移后的拋物線過(guò)點(diǎn)時(shí),與軸的另一點(diǎn)為,其頂點(diǎn)為,對(duì)稱軸與軸的交點(diǎn)為.
求、的值.
連接,試判斷是否為等腰三角形,并說(shuō)明理由.
現(xiàn)將一足夠大的三角板的直角頂點(diǎn)放在射線或射線上,一直角邊始終過(guò)點(diǎn),另一直角邊與軸相交于點(diǎn),是否存在這樣的點(diǎn),使以點(diǎn)、、為頂點(diǎn)的三角形與全等?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com