【題目】如圖,已知直線軸交于點(diǎn)A,與y軸交于點(diǎn)C,矩形ACBE的頂點(diǎn)B在第一象限的反比例函數(shù)圖像上,過點(diǎn)B,垂足為F,設(shè)OF=t

1)求∠ACO的正切值;

2)求點(diǎn)B的坐標(biāo)(用含t的式子表示);

3)已知直線與反比例函數(shù)圖像都經(jīng)過第一象限的點(diǎn)D,聯(lián)結(jié)DE,如果軸,求m的值.

【答案】1)∠ACO的正切值為;(2)點(diǎn)B的坐標(biāo);(3m的值為

【解析】

(1)根據(jù)一次函數(shù)解析式算出點(diǎn)的坐標(biāo)即可求算;

(2)根據(jù)矩形的性質(zhì)得出,從而表示的坐標(biāo);

(3)作軸,根據(jù)矩形的性質(zhì)得出,從而表示出的坐標(biāo),再根據(jù)條件表示的坐標(biāo),再根據(jù)均在反比例圖象上從而算出

(1)∵直線軸交于點(diǎn)A,與軸交于點(diǎn)C

(2)∵四邊形是矩形,,

∴點(diǎn)B的坐標(biāo)

(3)

如圖;作

四邊形是矩形

點(diǎn)的橫坐標(biāo)為

又∵軸,

,均在反比例上:

解得:

∵四邊形是矩形

舍去

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的邊長(zhǎng)為3,∠BAD60°,點(diǎn)E、F在對(duì)角線AC上(點(diǎn)E在點(diǎn)F的左側(cè)),且EF1,則DE+BF最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】工人師傅在修茸一人字架屋頂BAC時(shí)需要加固,計(jì)劃焊接三根鋼條AD,DE,FG.在如圖所示的ABC中,AB=AC=10,BC=12ADBC于點(diǎn)D,點(diǎn)E,F,G分別是ABBD,AC上的點(diǎn),連接DE,GF,交于點(diǎn)H,GFAD交于點(diǎn)M,當(dāng)HFM的中點(diǎn),BFCF=15,AGAE=57時(shí),AGM的面積為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長(zhǎng)為的正的邊在直線上,兩條距離為的平行直線垂直于直線同時(shí)向右移動(dòng)(的起始位置在點(diǎn)),速度均為每秒個(gè)單位,運(yùn)動(dòng)時(shí)間為(秒),直到到達(dá)點(diǎn)停止,在向右移動(dòng)的過程中,記夾在間的部分的面積為,則關(guān)于的函數(shù)圖象大致為(  )

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)發(fā)現(xiàn):如圖①,點(diǎn)A為一動(dòng)點(diǎn),點(diǎn)B和點(diǎn)C為兩個(gè)定點(diǎn),且,).

填空:當(dāng)點(diǎn)位于_______時(shí),線段的長(zhǎng)取得最小值,且最小值為_______(用含的式子表示);

2)如圖②應(yīng)用:點(diǎn)為線段外一動(dòng)點(diǎn),且,,如圖2分別以為邊作等邊三角形和等邊三角形,連接、

①請(qǐng)找出圖中與相等的線段,并說明理由;

②直接寫出線段長(zhǎng)的最小值.

3)拓展:如圖3,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,點(diǎn)為線段OB外一動(dòng)點(diǎn),且,,請(qǐng)求出的最小值并直接寫出點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在大樓的正前方有一斜坡米,坡角,小紅在斜坡下的點(diǎn)處測(cè)得樓頂的仰角為在斜坡上的點(diǎn)處測(cè)得樓頂的仰角為其中點(diǎn)在同一直線上.

1)求斜坡的高度;

2)求大樓的高度(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形OABC中,OA3,OC2,FAB上的一個(gè)動(dòng)點(diǎn)(F不與AB重合),過點(diǎn)F的反比例函數(shù)yx0)的圖象與BC邊交于點(diǎn)E

1)當(dāng)FAB的中點(diǎn)時(shí),求該反比例函數(shù)的解析式和點(diǎn)E的坐標(biāo).

2)設(shè)過(1)中的直線EF的解析式為yax+b,直接寫出不等式ax+b的解集.

3)當(dāng)k為何值時(shí),△AEF的面積最大,最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小華和同伴在春游期間,發(fā)現(xiàn)在某地小山坡的點(diǎn)E處有一棵盛開的桃花的小桃樹,他想利用平面鏡測(cè)量的方式計(jì)算一下小桃樹到山腳下的距離,即DE的長(zhǎng)度,小華站在點(diǎn)B的位置,讓同伴移動(dòng)平面鏡至點(diǎn)C處,此時(shí)小華在平面鏡內(nèi)可以看到點(diǎn)E,且BC2.7米,CD11.5米,∠CDE120°,已知小華的身高為1.8米,請(qǐng)你利用以上的數(shù)據(jù)求出DE的長(zhǎng)度.(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某儲(chǔ)運(yùn)部緊急調(diào)撥一批物資,調(diào)進(jìn)物資共用4小時(shí),調(diào)進(jìn)物資2小時(shí)后開始調(diào)出物資(調(diào)進(jìn)物資與調(diào)出物資的速度均保持不變).儲(chǔ)運(yùn)部庫(kù)存物資(噸)與時(shí)間(小時(shí))之間的函數(shù)關(guān)系如圖所示,這批物資從開始調(diào)進(jìn)到全部調(diào)出需要的時(shí)間是(

A. 4小時(shí)B. 4.3小時(shí)C. 4.4小時(shí)D. 5小時(shí)

查看答案和解析>>

同步練習(xí)冊(cè)答案