【題目】已知斜三棱柱ABC﹣A1B1C1 的側(cè)面 A1ACC1與底面ABC垂直,∠ABC=90°,BC=2,AC=2 ,且AA1⊥A1C,AA1=A1C.
(1)求側(cè)棱A1A與底面ABC所成角的大小;
(2)求側(cè)面A1ABB1與底面ABC所成二面角的大小.
【答案】
(1)解:因為側(cè)面A1ACC1⊥底面ABC,AA1側(cè)面A1ACC1,
側(cè)面A1ACC1∩底面ABC=AC
所以直線AA1在底面ABC內(nèi)的射影為直線AC
故∠A1AC為側(cè)棱AA1與底面ABC所成的角
又AA1⊥A1C,AA1=A1C,
所以∠A1AC=45°為所求.
(2)解:取AC,AB的中點分別為M,N,連結(jié)A1M,MN,NA1
由(1)知A1M⊥AC,
故A1M⊥底面ABC,A1M⊥AB
又MN∥BC,∠ABC=90°
所以MN⊥AB,又MN∩A1M=M,所以AB⊥平面A1MN
則∠A1NM即為所求二面角的平面角
在RtA1MN中,A1M= ,AC=3,MN= BC=1,∠A1MN=90°,
所以tan∠A1MN= =3,∠A1MN=arctan3.
即所求二面角的大小為arctan3.
【解析】(1)由已知得直線AA1在底面ABC內(nèi)的射影為直線AC,∠A1AC為側(cè)棱AA1與底面ABC所成的角,由此能求出側(cè)棱A1A與底面ABC所成角的大。2)取AC,AB的中點分別為M,N,連結(jié)A1M,MN,NA1 , 由已知得∠A1NM即為所求二面角的平面角,由此能求出側(cè)面A1ABB1與底面ABC所成二面角的大小.
【考點精析】解答此題的關(guān)鍵在于理解空間角的異面直線所成的角的相關(guān)知識,掌握已知為兩異面直線,A,C與B,D分別是上的任意兩點,所成的角為,則.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為2的菱形ABCD中, ∠ABC=120°, E,F分別為AD,CD上的動點,且AE+CF=2,則線段EF長的最小值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】4月23人是“世界讀書日”,某中學(xué)在此期間開展了一系列的讀書教育活動,為了解本校學(xué)生課外閱讀情況,學(xué)校隨機抽取了100名學(xué)生對其課外閱讀時間進(jìn)行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均課外閱讀時間(單位:分鐘)的頻率分布直方圖,若將日均課外閱讀時間不低于60分鐘的學(xué)生稱為“讀書謎”,低于60分鐘的學(xué)生稱為“非讀書謎”
(1)根據(jù)已知條件完成下面2×2的列聯(lián)表,并據(jù)此判斷是否有99%的把握認(rèn)為“讀書謎”與性別有關(guān)?
非讀書迷 | 讀書迷 | 合計 | |
男 | 15 | ||
女 | 45 | ||
合計 |
(2)將頻率視為概率,現(xiàn)在從該校大量學(xué)生中,用隨機抽樣的方法每次抽取1人,共抽取3次,記被抽取的3人中的“讀書謎”的人數(shù)為X,若每次抽取的結(jié)果是相互獨立的,求X的分布列,期望E(X)和方程D(X) 附:K2= n=a+b+c+d
P(K2≥k0) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: =1(a>0)的焦點在x軸上,且橢圓C的焦距為2. (Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)過點R(4,0)的直線l與橢圓C交于兩點P,Q,過P作PN⊥x軸且與橢圓C交于另一點N,F(xiàn)為橢圓C的右焦點,求證:三點N,F(xiàn),Q在同一條直線上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若對任意的實數(shù)a,函數(shù)f(x)=(x﹣1)lnx﹣ax+a+b有兩個不同的零點,則實數(shù)b的取值范圍是( )
A.(﹣∞,﹣1]
B.(﹣∞,0)
C.(0,1)
D.(0,+∞)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,點 ,曲線 .以極點為坐標(biāo)原點,極軸為x軸正半軸建立平面直角坐標(biāo)系. (Ⅰ)在直角坐標(biāo)系中,求點A,B的直角坐標(biāo)及曲線C的參數(shù)方程;
(Ⅱ)設(shè)點M為曲線C上的動點,求|MA|2+|MB|2取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)△ABC的內(nèi)角A、B、C的對邊長分別為a、b、c.設(shè)S為△ABC的面積,滿足S= (a2+c2﹣b2). (Ⅰ)求B;
(Ⅱ)若b= ,求( ﹣1)a+2c的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在關(guān)于x的分式方程 ①和一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0②中,k、m、n均為實數(shù),方程①的根為非負(fù)數(shù).
(1)求k的取值范圍;
(2)當(dāng)方程②有兩個整數(shù)根x1、x2 , k為整數(shù),且k=m+2,n=1時,求方程②的整數(shù)根;
(3)當(dāng)方程②有兩個實數(shù)根x1、x2 , 滿足x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),且k為負(fù)整數(shù)時,試判斷|m|≤2是否成立?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com