精英家教網 > 初中數學 > 題目詳情

【題目】觀光塔是濰坊市區(qū)的標志性建筑,為測量其高度,如圖,一人先在附近一樓房的底端A點處觀測觀光塔頂端C處的仰角是60°,然后爬到該樓房頂端B點處觀測觀光塔底部D處的俯角是30°已知樓房高AB約是45m , 根據以上觀測數據可求觀光塔的高CDm

【答案】135
【解析】∵爬到該樓房頂端B點處觀測觀光塔底部D處的俯角是30°,
∴∠ADB=30°,
RtABD中,
tan30°=
解得, ,
AD=45 ,
∵在一樓房的底端A點處觀測觀光塔頂端C處的仰角是60°,
∴在RtACD中,
CD=ADtan60°=45 × =135米
故答案為135米
根據“爬到該樓房頂端B點處觀測觀光塔底部D處的俯角是30°”可以求出AD的長,然后根據“在一樓房的底端A點處觀測觀光塔頂端C處的仰角是60°”可以求出CD的長

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,⊙M過原點O,與x軸交于A(4,0),與y軸交于B(0,3),點C為劣弧AO的中點,連接AC并延長到D,使DC=4CA,連接BD.
(1)求⊙M的半徑;
(2)證明:BD為⊙M的切線;
(3)在直線MC上找一點P,使|DP﹣AP|最大.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知任意三角形的三邊長,如何求三角形面積?
古希臘的幾何學家海倫解決了這個問題,在他的著作《度量論》一書中給出了計算公式﹣﹣海倫公式S= (其中a,b,c是三角形的三邊長,p= ,S為三角形的面積),并給出了證明
例如:在△ABC中,a=3,b=4,c=5,那么它的面積可以這樣計算:
∵a=3,b=4,c=5
∴p= =6
∴S= = =6
事實上,對于已知三角形的三邊長求三角形面積的問題,還可用我國南宋時期數學家秦九韶提出的秦九韶公式等方法解決.
如圖,在△ABC中,BC=5,AC=6,AB=9

(1)用海倫公式求△ABC的面積;
(2)求△ABC的內切圓半徑r.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知一個由小正方體組成的幾何體的左視圖和俯視圖.
(1)該幾何體最少需要幾塊小正方體?
(2)最多可以有幾塊小正方體?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】數學活動課上,小敏、小穎分別畫了△ABC和△DEF , 尺寸如圖.如果兩個三角形的面積分別記作S△ABC、S△DEF , 那么它們的大小關系是(  )

A.S△ABC>S△DEF
B.S△ABC<S△DEF
C.S△ABC=S△DEF
D.不能確定

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AC是某市壞城路的一段,AE、BF、CD都是南北方向的街道,其與環(huán)城路AC的交叉口分別是A、B、C經測量花卉世界D位于點A的北偏東45°方向,點B的北偏東30°方向上,AB=2km,∠DAC=15°.

(1)求∠ADB的大;
(2)求B、D之間的距離;
(3)求C、D之間的距離.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在6×8網格圖中,每個小正方形邊長均為1,點O和A、B、C三點均為格點.
(1)以O為位似中心,在網格圖中作△A′B′C′,使△A′B′C′和△ABC位似,且位似比為1:2;
(2)連接(1)中的AA′,求四邊形AA′C′C的周長.(結果保留根號)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,銳角△ABC中,BECD是高,它們相交于O , 則圖中與△BOD相似的三角形有( 。
A.4個
B.3個
C.2個
D.1個

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB∥CD,AE平分∠CAB交CD于點E,若∠C=50°,則∠AED=( )

A.65°
B.115°
C.125°
D.130°

查看答案和解析>>

同步練習冊答案