26、如圖,在等腰直角△ABC中,∠BAC=90°,AD=AE,AF⊥BE交BC于點F,過F作FG⊥CD交BE延長線于G,求證:BG=AF+FG.
分析:過C作AB的平行線交AF的延長線于P,證明△ABE≌△ACP,△MCF≌△PCF,得BE=AP.MF=PF,EG=MG,即可推出答案.
解答:證明:過C作AB的平行線交AF的延長線于P,
∵∠BAE=∠ACP=90°AB=AC,∠ABE=∠PAC,
∴△ABE≌△ACP,
∵CP∥AB,
∴∠MCF=∠PCF,
∴△MCF≌△PCF,
∴BE=AP.MF=PF,EG=MG,
則BE+EG=AP+MG=AF+FP+MG=AF+FM+MG.
∴BG=AF+FG.
點評:此題考查學生對等腰直角三角形和全等三角形的判定與性質的理解和掌握,解答此題的關鍵是過C作AB的平行線交AF的延長線于P,證明△ABE≌△ACP,△MCF≌△PCF.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在等腰直角三角形ABC中,∠A=90°,P是△ABC內(nèi)一點,PA=1,PB=3,PC=
7
,那么∠CPA=
 
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

23、如圖,在等腰直角三角形ABC和DEC中,∠BCA=∠BCE=90°,點E在邊AB上,ED與AC交于點F,連接AD.
(1)求證:△BCE≌△ACD.
(2)求證:AB⊥AD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•海滄區(qū)一模)如圖,在等腰直角三角形ABC中,AC=BC=2,D為AB上的動點(不與A,B重合),過D作DE⊥AC于E,DF⊥BC于F,設AD的長度為x,DE與DF的長度和為y.則能表示y與x之間的函數(shù)關系的圖象大致是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖①,在等腰直角三角板ABC中,斜邊BC為2個單位長度,現(xiàn)把這塊三角板在平面直角坐標系xOy中滑動,并使B、C兩點始終分別位于y軸、x軸的正半軸上,直角頂點A與原點O位于BC兩側.
(1)取BC中點D,問OD+DA是否發(fā)生改變,若會,說明理由;若不會,求出OD+DA;
(2)你認為OA的長度是否會發(fā)生變化?若變化,那么OA最長是多少?OA最長時四邊形OBAC是怎樣的四邊形?并說明理由;
(3)填空:當OA最長時A的坐標(
2
2
2
2
),直線OA的解析式
y=x
y=x

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在等腰直角△ABC的斜邊AB上取兩點M、N(不與A、B重合)使∠MCN=45°,記AM=m,MN=x,NB=n,試判斷以x、m、n為邊長的三角形的形狀,并給予說明.

查看答案和解析>>

同步練習冊答案