A. | $\frac{\sqrt{5}-1}{2}$ | B. | $\frac{\sqrt{5}-1}{4}$ | C. | $\frac{\sqrt{5}+1}{4}$ | D. | $\frac{\sqrt{5}+1}{2}$ |
分析 先根據(jù)等腰三角形的性質(zhì)與判定以及三角形內(nèi)角和定理得出∠EBC=36°,∠BEC=72°,AE=BE=BC.再證明△BCE∽△ABC,根據(jù)相似三角形的性質(zhì)列出比例式$\frac{CE}{BC}$=$\frac{BE}{AC}$,求出AE,然后在△ADE中利用余弦函數(shù)定義求出cosA的值.
解答 解:∵△ABC中,AB=AC=4,∠C=72°,
∴∠ABC=∠C=72°,∠A=36°,
∵D是AB中點(diǎn),DE⊥AB,
∴AE=BE,
∴∠ABE=∠A=36°,
∴∠EBC=∠ABC-∠ABE=36°,
∠BEC=180°-∠EBC-∠C=72°,
∴∠BEC=∠C=72°,
∴BE=BC,
∴AE=BE=BC.
設(shè)AE=x,則BE=BC=x,EC=4-x.
在△BCE與△ABC中,
$\left\{\begin{array}{l}{∠CBE=∠BAC=36°}\\{∠C=∠ABC=72°}\end{array}\right.$,
∴△BCE∽△ABC,
∴$\frac{CE}{BC}$=$\frac{BE}{AC}$,即$\frac{4-x}{x}$=$\frac{x}{4}$,
解得x=-2±2$\sqrt{5}$(負(fù)值舍去),
∴AE=-2+2$\sqrt{5}$.
在△ADE中,∵∠ADE=90°,
∴cosA=$\frac{AD}{AE}$=$\frac{2}{-2+2\sqrt{5}}$=$\frac{\sqrt{5}+1}{4}$.
故選C.
點(diǎn)評(píng) 本題考查了解直角三角形,等腰三角形的性質(zhì)與判定,三角形內(nèi)角和定理,線(xiàn)段垂直平分線(xiàn)的性質(zhì),相似三角形的判定與性質(zhì),難度適中.證明△BCE∽△ABC是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{2}$ | B. | -$\sqrt{2}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | -$\frac{\sqrt{2}}{2}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 2$\sqrt{3}$ | D. | 4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 沒(méi)有實(shí)數(shù)根 | B. | 有一個(gè)實(shí)數(shù)根 | ||
C. | 有兩個(gè)不相等的實(shí)數(shù)根 | D. | 有兩個(gè)相等的實(shí)數(shù)根 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com