如圖,△ABC中,∠C=90°,∠CAD=30°,AC=BC=AD.
求證:BD=CD.

【答案】分析:可過C作CE⊥AD于E,過D作DE⊥BC于F,依據(jù)題意可得∠FCD=∠ECD,由角平分線到角兩邊的距離相等可得DF=DE,進而的△CED≌△CFD,由對應邊又可得Rt△CDF≌Rt△BDF,進而可得出結論.
解答:證明:如圖,過C作CE⊥AD于E,過D作DF⊥BC于F.
∵∠CAD=30°,∴∠ACE=60°,且CE=AC,
∵AC=AD,∠CAD=30°,∴∠ACD=75°,
∴∠FCD=90°-∠ACD=15°,∠ECD=∠ACD-∠ACE=15°,
在△CED和△CFD中
,
∴△CED≌△CFD,
∴CF=CE=AC=BC,
∴CF=BF.
∴Rt△CDF≌Rt△BDF,
∴BD=CD.
點評:本題主要考查了全等三角形的判定及性質以及等腰三角形的性質問題,能夠熟練運用其性質進行解題.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

26、已知:如圖,△ABC中,點D在AC的延長線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知,如圖,△ABC中,點D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫∠DAC的平分線AE交BC于點E,則AE與BC有什么位置關系,請說明理由.

查看答案和解析>>

同步練習冊答案