【題目】如圖,A、B、C三點在同一直線上,分別以AB、BC為邊,在直線AC的同側(cè)作等邊△ABD和等邊△BCE,連接AE交BD于點M,連接CD交BE于點N,連接MN得△BMN.
(1)求證:AE=CD;
(2)試判斷△BMN的形狀,并說明理由;
(3)設(shè)CD、AE相交于點G,求∠AGC的度數(shù).
【答案】(1)見解析;(2)△BMN為等邊三角形,理由見解析;(3)∠AGC=120°.
【解析】
(1)由△ABD與△BCE都為等邊三角形,利用等邊三角形的性質(zhì)得到兩條邊對應相等,兩個角相等都為60°,利用SAS即可得到△ABE≌△DBC即可解決問題;(2)△BMN為等邊三角形,理由為:由第一問△ABE≌△DBC,利用全等三角形的對應角相等得到一對角相等,再由∠ABD=∠EBC=60°,利用平角的定義得到∠MBE=∠NBC=60°,再由EB=CB,利用ASA可得出△EMB≌△CNB,利用全等三角形的對應邊相等得到MB=NB,再由∠MBE=60°,利用有一個角為60°的等腰三角形為等邊三角形可得出△BMN為等邊三角形;(3)利用全等三角形的性質(zhì),證明∠DGM=∠ABM=60°即可.
(1)證明:∵等邊△ABD和等邊△BCE,
∴AB=DB,BE=BC,∠ABD=∠EBC=60°,
∴∠ABE=∠DBC=120°,
在△ABE和△DBC中, ,
∴△ABE≌△DBC(SAS).
∴AE=CD.
(2)解:△BMN為等邊三角形,理由為:
∵△ABE≌△DBC,
∴∠AEB=∠DCB,
又∠ABD=∠EBC=60°,
∴∠MBE=180°﹣60°﹣60°=60°,
即∠MBE=∠NBC=60°,
在△MBE和△NBC中, ,
∴△MBE≌△NBC(ASA),
∴BM=BN,∠MBE=60°,
則△BMN為等邊三角形.
(3)解:∵△ABE≌△DBC,
∴∠EAB=∠BDC,
∵∠AMB=∠DMG,
∴∠ABM=∠DGM,
∵△ABD是等邊三角形,
∴∠ABM=60°,
∴∠DGM=∠ABM=60°,
∴∠AGC=120°.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,P是等邊三角形ABC內(nèi)一點,且PA=4,PB=,PC=2,以下五個結(jié)論:①∠ BPC=120°;②∠APC=120°;③;④AB=;⑤點P到△ABC三邊的距離分別為PE,PF,PG,則有 其中正確的有( )
A.4個B.3個C.2個D.1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=-x2+bx+c與直線AB交于A(-4,-4),B(0,4)兩點,直線AC:y=-x-6交y軸與點C.點E是直線AB上的動點,過點E作EF⊥x軸交AC于點F,交拋物線于點G.
(1)求拋物線y=-x2+bx+c的表達式;
(2)連接GB、EO,當四邊形GEOB是平行四邊形時,求點G的坐標;
(3)①在y軸上存在一點H,連接EH、HF,當點E運動到什么位置時,以A、E、F、H為頂點的四邊形是矩形?求出此時點E、H的坐標;
②在①的前提下,以點E為圓心,EH長為半徑作圓,點M為⊙E上一動點,求AM+CM的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O且AB=AC,延長BC至點D,使CD=CA,連接AD交⊙O于點E,連接BE、CE.
(1)求證:△ABE≌△CDE;
(2)填空:
①當∠ABC的度數(shù)為 時,四邊形AOCE是菱形;
②若AE=6,EF=4,DE的長為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,O為坐標原點,△ABO的邊AB垂直于x軸,垂足為點B,反比例函數(shù)y=(x<0)的圖象經(jīng)過AO的中點C,交AB于點D.若點D的坐標為(﹣4,n),且AD=3.
(1)求反比例函數(shù)y=的表達式;
(2)求經(jīng)過C、D兩點的直線所對應的函數(shù)解析式;
(3)設(shè)點E是線段CD上的動點(不與點C、D重合),過點E且平行y軸的直線l與反比例函數(shù)的圖象交于點F,求△OEF面積的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,A(-3,2),B(-4,-3),C(-1,-1).
(1)①在圖中作出△ABC 關(guān)于y軸對稱的△A1B1C1并寫出點C1 的坐標(直接寫答案):C1______;②△A1B1C1 的面積為______.
(2)在y軸上畫出點 P,使 PB+PC 最。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC和△ADE均為等腰直角三角形,連接BE,點F、G分別為AD、AC的中點,連接FG.在△ADE繞A旋轉(zhuǎn)的過程中,當B、D、E三點共線時,AB=,AD=1,則線段FG的長為___.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC是邊長為3的等邊三角形,△BDC是等腰三角形,且∠BDC=120°.以D為頂點作一個60°角,使其兩邊分別交AB于點M,交AC于點N,連接MN,則△AMN的周長為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一列快車由甲地開往乙地,一列慢車由乙地開往甲地,兩車同時出發(fā),勻速運動.快車離乙地的路程y1(km)與行駛的時間x(h)之間的函數(shù)關(guān)系,如圖中線段AB所示;慢車離乙地的路程y2(km)與行駛的時間x(h)之間的函數(shù)關(guān)系,如圖中線段OC所示.根據(jù)圖象進行以下研究.
解讀信息:
(1)甲、乙兩地之間的距離為 km;
(2)快車的速度是 km/h,慢車的速度是 km/h.
(3)求線段AB與線段OC的解析式;
(4)快、慢兩車在何時相遇?相遇時距離乙地多遠?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com