如圖所示,正五邊形ABCDE的邊長(zhǎng)為1,⊙B過(guò)五邊形的頂點(diǎn)A、C,則劣弧AC的長(zhǎng)為 .
π .
【考點(diǎn)】正多邊形和圓;弧長(zhǎng)的計(jì)算.
【分析】由正五邊形的性質(zhì)好內(nèi)角和定理得出∠B=108°,然后由弧長(zhǎng)公式即可得出結(jié)果.
【解答】解:∵五邊形ABCDE是正五邊形,
∴∠B=(5﹣2)×180°=108°,
∴劣弧AC的長(zhǎng)==π;
故答案為:.
【點(diǎn)評(píng)】本題考查了正五邊形的性質(zhì)、多邊形內(nèi)角和定理、弧長(zhǎng)公式;熟練掌握正五邊形的性質(zhì),由內(nèi)角和定理求出∠B的度數(shù)是解決問(wèn)題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【提出問(wèn)題】
(1)如圖1,在等邊△ABC中,點(diǎn)M是BC上的任意一點(diǎn)(不含端點(diǎn)B、C),連結(jié)AM,以AM為邊作等邊△AMN,連結(jié)CN.求證:∠ABC=∠ACN.
【類(lèi)比探究】
(2)如圖2,在等邊△ABC中,點(diǎn)M是BC延長(zhǎng)線上的任意一點(diǎn)(不含端點(diǎn)C),其它條件不變,(1)中結(jié)論∠ABC=∠ACN還成立嗎?請(qǐng)說(shuō)明理由.
【拓展延伸】
(3)如圖3,在等腰△ABC中,BA=BC,點(diǎn)M是BC上的任意一點(diǎn)(不含端點(diǎn)B、C),連結(jié)AM,以AM為邊作等腰△AMN,使頂角∠AMN=∠ABC.連結(jié)CN.試探究∠ABC與∠ACN的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
把一塊直尺與一塊三角板如圖放置,若∠1=40°,則∠2的度數(shù)為( 。
A.125° B.120° C.140° D.130°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù)y=﹣x+4的圖象與函數(shù)的圖象在同一坐標(biāo)系內(nèi).函數(shù)y=﹣x+4的圖象如圖1與坐標(biāo)軸交于A、B兩點(diǎn),點(diǎn)M(2,m)是直線AB上一點(diǎn),點(diǎn)N與點(diǎn)M關(guān)于y軸對(duì)稱(chēng),線段MN交y軸于點(diǎn)C.
(1)m= ,S△AOB= ;
(2)如果線段MN被反比例函數(shù)的圖象分成兩部分,并且這兩部分長(zhǎng)度的比為1:3,求k的值;
(3)如圖2,若反比例函數(shù)圖象經(jīng)過(guò)點(diǎn)N,此時(shí)反比例函數(shù)上存在兩個(gè)點(diǎn)E(x1,y1)、F(x2,y2)關(guān)于原點(diǎn)對(duì)稱(chēng)且到直線MN的距離之比為1:3,若x1<x2請(qǐng)直接寫(xiě)出這兩點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,在平面直角坐標(biāo)系中,過(guò)點(diǎn)A與x軸平行的直線交拋物線y=于點(diǎn)B、C,線段BC的長(zhǎng)度為6,拋物線y=﹣2x2+b與y軸交于點(diǎn)A,則b=( 。
A.1 B.4.5 C.3 D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,小聰在作線段AB的垂直平分線時(shí),他是這樣操作的:分別以A和B為圓心,大于AB的長(zhǎng)為半徑畫(huà)弧,兩弧相交于C、D,則直線CD即為所求.根據(jù)他的作圖方法可知四邊形ADBC一定是( 。
A.矩形 B.菱形 C.正方形 D.等腰梯形
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com