【題目】如圖,點A、B、C、D的坐標分別是(1,7)、(1,1)、(4,1)、(6,1),且△CDE∽△ABC,則點E的坐標是_____.
【答案】(4,0),(6,5),(6,2),(4,2)、(4,5)、(6,0)
【解析】
根據(jù)相似三角形的判定:兩邊對應(yīng)成比例且夾角相等的兩三角形相似即可判斷.
解:△ABC中,∠ABC=90°,AB=6,BC=3,AB:BC=2.
①當點E的坐標為(4,0)時,∠CDE=90°,CD=2,DE=1,則AB:BC=CD:DE,△CDE∽△ABC,故正確;
②當點E的坐標為(6,5)時,∠CDE=90°,CD=2,DE=4,則AB:BC=DE:CD,△CDE∽△ABC,故正確;
③當點E的坐標為(6,2)時,∠ECD=90°,CD=2,CE=1,則AB:BC=CD:CE,△CDE∽△ABC,故正確;
同理,當點E的坐標為(4,2)、(4,5)、(6,0),
故答案為:(4,0),(6,5),(6,2),(4,2)、(4,5)、(6,0),
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,為坐標原點,直線經(jīng)過點,且分別交軸、軸于、兩點.
(1)求兩點坐標;
(2)求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人分別從丙、丁兩地同時出發(fā),勻速相向而行.甲的速度大于乙的速度,甲到達丁地后,乙繼續(xù)前行.設(shè)出發(fā)后,兩人相距,圖中折線表示從兩人出發(fā)至乙到達丙地的過程中與之間的函數(shù)關(guān)系.根據(jù)圖中信息,求:
(1)點的坐標,并說明它的實際意義;
(2)甲、乙兩人的速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點(﹣1,2),且與x軸交點的橫坐標為x1、x2,其中﹣2<x1<﹣1、0<x2<1下列結(jié)論:①4a﹣2b+c<0②2a﹣b<0③abc>0④b2+8a>4ac正確的結(jié)論是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形ABCD中,AD∥BC,E為CD中點,連接AE并延長AE交BC的延長線于點F.
(1)求證:CF=AD.
(2)若AD=3,AB=8,當BC為多少時,點B在線段AF的垂直平分線上,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點D從點C出發(fā)沿CA方向以4cm/s的速度向點A勻速運動,同時點E從點A出發(fā)沿AB方向以2cm/s的速度向點B勻速運動,當其中一個點到達終點時,另一個點也隨之停止運動.設(shè)點D,E運動的時間是ts(0<t≤15).過點D作DF⊥BC于點F,連接DE,EF.
(1)求證:四邊形AEFD是平行四邊形;
(2)當t為何值時,△DEF為直角三角形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某鄉(xiāng)鎮(zhèn)企業(yè)生產(chǎn)部有技術(shù)工人15人,生產(chǎn)部為了合理制定產(chǎn)品的每月生產(chǎn)定額,統(tǒng)計了這15人某月的加工零件數(shù)如下:
每人加工零件數(shù) | 540 | 450 | 300 | 240 | 210 | 120 |
人數(shù) | 1 | 1 | 2 | 6 | 3 | 2 |
(1)寫出這15人該月加工零件的平均數(shù)、中位數(shù)和眾數(shù);
(2)生產(chǎn)部負責(zé)人要定出合理的每人每月生產(chǎn)定額,你認為應(yīng)該定為多少件合適?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,△ABC中,AB=AC,∠B、∠C的平分線交于O點,過O點作EF∥BC交AB、AC于E、F.
(1)圖①中有幾個等腰三角形?猜想:EF與BE、CF之間有怎樣的關(guān)系.
(2)如圖②,若AB≠AC,其他條件不變,圖中還有等腰三角形嗎?如果有,分別指出它們.在第(1)問中EF與BE、CF間的關(guān)系還存在嗎?
(3)如圖③,若△ABC中∠B的平分線BO與三角形外角平分線CO交于O,過O點作OE∥BC交AB于E,交AC于F.這時圖中還有等腰三角形嗎?EF與BE、CF關(guān)系又如何?說明你的理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com