【題目】平面直角坐標系xOy中,直線y=x+b與直線y=x交于點A(m,1).與y軸交于點B
(1)求m的值和點B的坐標;
(2)若點C在y軸上,且△ABC的面積是1,請直接寫出點C的坐標.
【答案】(1)m=2,B(0,2);(2)C(0,-1)或(0,-3).
【解析】
(1)依據(jù)一次函數(shù)圖象上點的坐標特征,即可得到m的值和點B的坐標;
(2)依據(jù)點C在y軸上,且△ABC的面積是1,即可得到BC=1,進而得出點C的坐標.
(1)∵直線y=x+b與直線y=x交于點A(m,1),
∴m=1,
∴m=2,
∴A(2,1),
代入y=x+b,可得×2+b=1,
∴b=-2,
∴B(0,-2).
(2)點C(0,-1)或C(0,-3).理由:
∵△ABC的面積是1,點C在y軸上,
∴|BC|×2=1,
∴|BC|=1,
又∵B(0,-2),
∴C(0,-1)或C(0,-3).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直立于地面上的電線桿,在陽光下落在水平地面和坡面上的影子分別是.測得, , ,在D處測得電線桿頂端A的仰角為,則電線桿的高度為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知一個數(shù)軸上有A,B,C三點,它們所表示的數(shù)分別為2,﹣3,x.
(1)若點C是線段AB的中點,請直接寫出x的值;
(2)若OC=OB﹣OA,求出x的值;
(3)若2AC+OB=7,求x的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是正方形,點G是BC邊上任意一點,DE⊥AG于點E,BF∥DE且交AG于點F.
(1)求證:AE=BF;
(2)如圖1,連接DF、CE,探究線段DF與CE的關系并證明;
(3)如圖2,若AB=,G為CB中點,連接CF,直接寫出四邊形CDEF的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知直線l上有一點O,點A,B同時從O出發(fā),在直線l上分別向左,向右作勻速運動,且A,B的速度之比是1:2,設運動時間為ts,
(1)當t=2s時,AB=24cm,此時,
①在直線l上畫出A,B兩點運動2s時的位置,并回答點A運動的速度是 cm/s,點B的運動速度是 cm/s;
②若點P為直線l上一點,且PA=OP+PB,求 的值;
(2)在(1)的條件下,若A,B同時按原速度向左運動,再經(jīng)過幾秒,OA=3OB?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形網(wǎng)格中,每個小正方形的邊長均為1,每個小正方形的頂點叫格點.
(1)在圖①中,線段AB的長度為 ;若在圖中畫出以C為直角頂點的Rt△ABC,使點C在格點上,請在圖中畫出所有點C;
(2)在圖②中,以格點為頂點,請先用無刻度的直尺畫正方形ABCD,使它的面積為13;再畫一條直線PQ(不與正方形對角線重合),使PQ恰好將正方形ABCD的面積二等分(保留作圖痕跡).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,點D,E分別在AC,BC上,且∠CDE=∠B,將△CDE沿DE折疊,點C恰好落在AB邊上的點F處.若AC=8,AB=10,則CD的長為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+4的圖象與x軸交于兩點A、B,與y軸交于點C,且A(﹣1,0)、B(4,0).
(1)求此二次函數(shù)的表達式;
(2)如圖1,拋物線的對稱軸m與x軸交于點E,CD⊥m,垂足為D,點F(﹣,0),動點N在線段DE上運動,連接CF、CN、FN,若以點C、D、N為頂點的三角形與△FEN相似,求點N的坐標;
(3)如圖2,點M在拋物線上,且點M的橫坐標是1,將射線MA繞點M逆時針旋轉45°,交拋物線于點P,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,已知點C在線段AB上,線段AC=10厘米,BC=6厘米,點M,N分別是AC,BC的中點.
(1)求線段MN的長度;
(2)根據(jù)第(1)題的計算過程和結果,設AC+BC=a,其他條件不變,求MN的長度;
(3)動點P、Q分別從A、B同時出發(fā),點P以2cm/s的速度沿AB向右運動,終點為B,點Q以1cm/s的速度沿AB向左運動,終點為A,當一個點到達終點,另一個點也隨之停止運動,求運動多少秒時,C、P、Q三點有一點恰好是以另兩點為端點的線段的中點?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com