【題目】如圖,小俊在A處利用高為1.5米的測角儀AB測得樓EF頂部E的仰角為30°,然后前進12米到達C處,又測得樓頂E的仰角為60°,求樓EF的高度.(結(jié)果精確到0.1米)
【答案】解:設(shè)樓EF的高為x米,可得EG=EF﹣GF=(x﹣1.5)米,
依題意得:EF⊥AF,DC⊥AF,BA⊥AF,BD⊥EF(設(shè)垂足為G),
在Rt△EGD中,DG=(x﹣1.5)米,在Rt△EGB中,BG=(x﹣1.5)米,
∴CA=DB=BG﹣DG=(x﹣1.5)米,
∵CA=12米,∴(x﹣1.5)=12,
解得:x=6+1.5≈11.9,
則樓EF的高度約為11.9米.
【解析】設(shè)樓EF的高為x米,由EG=EF﹣GF表示出EG,根據(jù)題意得到EF與AF垂直,DC與AF垂直,BA與AF垂直,BD與EF垂直,在直角三角形EGD中,利用銳角三角函數(shù)定義表示出DG,在直角三角形EGB中,利用銳角三角函數(shù)定義表示出BG,根據(jù)BG﹣DG表示出DB,即為CA,根據(jù)CA的長列出關(guān)于x的方程,求出方程的解即可得到結(jié)果.
科目:初中數(shù)學 來源: 題型:
【題目】頂點為(﹣ ,﹣ )的拋物線與y軸交于點A(0,﹣4),E(0,b)(b>﹣4)為y軸上一動點,過點E的直線y=x+b與拋物線交于B、C兩點.
(1)求拋物線的解析式;
(2)①如圖1,當b=0時,求證:E是線段BC的中點;
②當b≠0時,E還是線段BC的中點嗎?說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=﹣x2+2x+m.
(1)如果二次函數(shù)的圖像與x軸有兩個交點,求m的取值范圍;
(2)如圖,二次函數(shù)的圖像過點A(3,0),與y軸交于點B,求直線AB與這個二次函數(shù)的解析式;
(3)在直線AB上方的拋物線上有一動點D,當D與直線AB的距離DE最大時,求點D的坐標,并求DE最大距離是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,C為線段AB上一點,分別以AC、BC為邊在AB的同側(cè)作等邊△HAC與等邊△DCB,連接DH.
(1)如圖1,當∠DHC=90°時,求 的值;
(2)在(1)的條件下,作點C關(guān)于直線DH的對稱點E,連接AE、BE,求證:CE平分∠AEB;
(3)現(xiàn)將圖1中△DCB繞點C順時針旋轉(zhuǎn)一定角度α(0°<α<90°),如圖2,點C關(guān)于直線DH的對稱點為E,則(2)中的結(jié)論是否成立并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】設(shè)點Q到圖形W上每一個點的距離的最小值稱為點Q到圖形W的距離.例如正方形ABCD滿足A(1,0),B(2,0),C(2,1),D(1,1),那么點O(0,0)到正方形ABCD的距離為1.
(1)如果⊙P是以(3,4)為圓心,1為半徑的圓,那么點O(0,0)到⊙P的距離為;
(2)求點M(3,0)到直線y=2x+1的距離;
(3)如果點N(0,a)到直線y=2x+1的距離為3,求a的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】趙爽弦圖是由四個全等的直角三角形與中間的一個小正方形拼成的一個大正方形,如圖所示,若這四個全等直角三角形的兩條直角邊分別平行于x軸和y軸,大正方形的頂點B1、C1、C2、C3、…、Cn在直線y=﹣ x+ 上,頂點D1、D2、D3、…、Dn在x軸上,則第n個陰影小正方形的面積為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有四張背面完全相同的卡片A,B,C,D,小偉將這四張卡片背面朝上洗勻后摸出一張,放回洗勻后再摸一張.
(1)用樹狀圖(或列表法)表示兩次摸出卡片所有可能出現(xiàn)的結(jié)果(卡片可用A,B,C,D表示);
(2)求摸出兩張卡片所表示的幾何圖形是軸對稱圖形而不是中心對稱圖形的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=ax+1與x軸、y軸分別相交于A、B兩點,與雙曲線y= (x>0)相交于點P,PC⊥x軸于點C,且PC=2,點A的坐標為(﹣2,0).
(1)求雙曲線的解析式;
(2)若點Q為雙曲線上點P右側(cè)的一點,且QH⊥x軸于H,當以點Q、C、H為頂點的三角形與△AOB相似時,求點Q的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com