【題目】在不透明的袋子中有四張標有數(shù)字1,2,3,4的卡片,小明、小華兩人按照各自的規(guī)則玩抽卡片游戲。
小明畫出樹形圖如下:
小華列出表格如下:
第一次 第二次 | 1 | 2 | 3 | 4 |
1 | (1,1) | (2,1) | (3,1) | (4,1) |
2 | (1,2) | (2,2) | ① | (4,2) |
3 | (1,3) | (2,3) | (3,3) | (4,3) |
4 | (1,4) | (2,4) | (3,4) | (4,4) |
回答下列問題:
(1)根據(jù)小明畫出的樹形圖分析,他的游戲規(guī)則是:隨機抽出一張卡片后 (填“放回”或“不放回”),再隨機抽出一張卡片;
(2)根據(jù)小華的游戲規(guī)則,表格中①表示的有序數(shù)對為 ;
(3)規(guī)定兩次抽到的數(shù)字之和為奇數(shù)的獲勝,你認為淮獲勝的可能性大?為什么?
科目:初中數(shù)學(xué) 來源: 題型:
【題目】當-2≤x≤1時,二次函數(shù)y=-(x-m)2+m2+1有最大值3,則實數(shù)m的值為( 。
A. 2或-B. 或-C. 或-D. 或-
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦BC=6cm,AC=8cm.若動點P以2cm/s的速度從B點出發(fā)沿著B→A的方向運動,點Q以1cm/s的速度從A點出發(fā)沿著A→C的方向運動,當點P到達點A時,點Q也隨之停止運動.設(shè)運動時間為t(s),當△APQ是直角三角形時,t的值為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,有“拋物線系”y=-(x-m)2+4m-3,頂點為點P,這些拋物線的形狀與拋物線 y=-x2 相同,但頂點位置不同.
(1)填寫下表,并說出:在m取不同數(shù)值時,點P位置的變化具有什么特征?
m的值 | … | -1 | 0 | 1 | 2 | … |
點P坐標 | … | … |
(2)若拋物線的對稱軸是直線x=1,則可確定m的值.點M(p,q)為此拋物線上的一個動點,且﹣1<p<2,而直線y=kx-4(k≠0)始終經(jīng)過點M.
①求此拋物線與x軸的交點坐標;
②求k的取值范圍.
(3)若點Q在x軸上,點S(0,-1)在y軸上,點R在坐標平面內(nèi),且以點P,Q,R,S為頂點的四邊形是正方形,試直接寫出所有點Q的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,MN為⊙O的直徑,ME是⊙O的弦,MD垂直于過點E的直線DE,垂足為點D,且ME平分∠DMN.
求證:(1)DE是⊙O的切線;
(2)ME2=MDMN.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=x的圖象與函數(shù)y=的圖象在第一象限內(nèi)交于點A、B(2,m)兩點.
(1)請求出函數(shù)y=的解析式;
(2)請根據(jù)圖象判斷當一次函數(shù)的值大于反比例函數(shù)的值時x的取值范圍;
(3)點C是函數(shù)y=在第一象限圖象上的一個動點,當OBC的面積為3時,請求出點C的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:⊙O的直徑AB與弦AC的夾角∠A=30°,過點C作⊙O的切線交AB的延長線于點P.
(1)求證:AC=CP;
(2)若PC=6,求圖中陰影部分的面積(結(jié)果精確到0.1).(參考數(shù)據(jù):,π=3.14)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E、F是對角線BD上兩點,且∠EAF=45°,將△ADF繞點A順時針旋轉(zhuǎn)90°后,得到△ABQ,連接EQ,求證:
(1)EA是∠QED的平分線;
(2)EF2=BE2+DF2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某賽季甲、乙兩名籃球運動員各參加10場比賽,各場得分情況如圖,下列四個結(jié)論中,正確的是( 。
A. 甲運動員得分的平均數(shù)小于乙運動員得分的平均數(shù)B. 甲運動員得分的中位數(shù)小于乙運動員得分的中位數(shù)
C. 甲運動員得分的最小值大于乙運動員得分的最小值D. 甲運動員得分的方差大于乙運動員得分的方差
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com