如圖,正方形網(wǎng)格中的每一個(gè)小正方形的邊長(zhǎng)都是1,四邊形ABCD的四個(gè)頂點(diǎn)都在格點(diǎn)上,O為AD邊的中點(diǎn),若把四邊形ABCD先向右平移3個(gè)單位長(zhǎng)度,再向下平移2個(gè)單位長(zhǎng)度,試解決下列問(wèn)題:

(1)畫(huà)出四邊形ABCD平移后的圖形四邊形A′B′C′D′;
(2)在四邊形A′B′C′D′上標(biāo)出點(diǎn)O的對(duì)應(yīng)點(diǎn)O’;
(3)四邊形A′B′C′D′ 的面積=       
7

試題分析:

通過(guò)對(duì)圖形的分割解析可以得到該圖形的面積是7
點(diǎn)評(píng):本題屬于對(duì)圖形平移的基本知識(shí)的理解和運(yùn)用
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

小明從鏡子里看到鏡子對(duì)面電子鐘的像如圖所示,則此刻的實(shí)際時(shí)間是(    )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

下列幾何圖形中:(1)平行四邊形;(2)線段;(3)角;(4)圓;(5)正方形;(6)任意三角形.其中一定是軸對(duì)稱圖形的有_____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:如圖所示,為任意三角形,若將繞點(diǎn)順時(shí)針旋轉(zhuǎn)180° 得到

(1)試猜想有何關(guān)系?說(shuō)明理由;
(2)請(qǐng)給添加一個(gè)條件,使旋轉(zhuǎn)得到的四邊形為矩形,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知,正方形紙片ABCD的邊長(zhǎng)為4,點(diǎn)P在BC邊上,BP=1,點(diǎn)E在AB邊上,且∠BPE=60°,沿PE翻折△EBP得到△EB′P. F是CD邊上一點(diǎn),沿PF翻折△FCP得到△FC′P,使點(diǎn)Cˊ落在射線PBˊ上.

(1)求證:EB′// C′F;
(2)連接B′F、C′E,求證:四邊形EB′F C′是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖所示,在△ABC中,∠CAB=70°,在同一平面內(nèi),將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)到△AB′C′的位置,使CC′∥AB,則∠BAB′=         .   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知△A′B′C′是由△ABC經(jīng)過(guò)平移得到的,它們各頂點(diǎn)在平面直角坐標(biāo)系中的坐標(biāo)如下表所示:
△ABC
A(,0)
B(3,0)
C(5,5)
△A′B′C′
A′(4,2)
B′(7,b)
C′(c,7)
(1)觀察表中各對(duì)應(yīng)點(diǎn)坐標(biāo)的變化,并填空:
__________,__________,__________;
(2)在平面直角坐標(biāo)系中畫(huà)出△ABC及平移后的△A′B′C′
(3)直接寫(xiě)出△A′B′C′的面積是__________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在直角坐標(biāo)系中,A(-4,4),B(-3,2),C(-1,4),D(-2,5).

(1)請(qǐng)?jiān)趫D中畫(huà)出四邊形ABCD,則四邊形ABCD的面積為             ;
(2)將四邊形ABCD向右平移4個(gè)單位長(zhǎng)度,向下平移6個(gè)單位長(zhǎng)度,得到四邊形 ,請(qǐng)?jiān)谄矫嬷苯亲鴺?biāo)系中畫(huà)出四邊形,并寫(xiě)出分別寫(xiě)出、、的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,△ABC中,AB=AC,∠BAC=40°,D為△ABC內(nèi)一點(diǎn),如果將△ACD繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)到△ABD′的位置,則∠ADD′的度數(shù)是
A.40°B.50°C.60°   D.70°

查看答案和解析>>

同步練習(xí)冊(cè)答案