【題目】已知△ABC內(nèi)接于⊙O,過點A作直線EF.
(1)如圖①所示,若AB為⊙O的直徑,要使EF成為⊙O的切線,還需要添加的一個條件是(至少說出兩種): 或者 .
(2)如圖②所示,如果AB是不過圓心O的弦,且∠CAE=∠B,那么EF是⊙O的切線嗎?試證明你的判斷.
【答案】(1)①∠BAE=90°,②∠EAC=∠ABC
(2)EF是⊙O的切線
【解析】
試題分析:(1)添加條件EF⊥AB,根據(jù)切線的判定推出即可;添加條件∠EAC=∠B,根據(jù)直徑推出∠CAB+∠B=90°,推出∠EAC+∠CAB=90°,根據(jù)切線判定推出即可;
(2)作直徑AM,連接CM,推出∠M=∠B=∠EAC,求出∠EAC+∠CAM=90°,根據(jù)切線的判定推出即可.
試題解析:(1)①∠BAE=90°,②∠EAC=∠ABC,
理由是:①∵∠BAE=90°,∴AE⊥AB, ∵AB是直徑,∴EF是⊙O的切線;
②∵AB是直徑,∴∠ACB=90°,∴∠ABC+∠BAC=90°,
∵∠EAC=∠ABC,∴∠BAE=∠BAC+∠EAC=∠BAC+∠ABC=90°,即AE⊥AB,
∵AB是直徑,∴EF是⊙O的切線;
(2)EF是⊙O的切線.
作直徑AM,連接CM,則∠ACM=90°,∠M=∠B,
∴∠M+∠CAM=∠B+∠CAM=90°,
∵∠CAE=∠B,∴∠CAM+∠CAE=90°,∴AE⊥AM,
∵AM為直徑,∴EF是⊙O的切線.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩個完全相同的正四面體骰子的各面上分別標(biāo)明數(shù)字1,2,3,4,在桌子上同時投擲這兩個正四面體骰子,請用列表法或畫樹狀圖的方法,求與桌面接觸的面所得的點數(shù)之和等于6的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示:在平面直角坐標(biāo)系中,四邊形OACB為矩形,C點坐標(biāo)為(3,6),若點P從O點沿OA向A點以1cm/s的速度運動,點Q從A點沿AC以2cm/s的速度運動,如果P、Q分別從O、A同時出發(fā),問:
(1)經(jīng)過多長時間△PAQ的面積為2cm?
(2)△PAQ的面積能否達(dá)到3 cm?
(3)經(jīng)過多長時間,P、Q兩點之間的距離為cm?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場設(shè)立了一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤(如圖),并規(guī)定:顧客購物10元以上就能獲得一次轉(zhuǎn)動轉(zhuǎn)盤的機會,當(dāng)轉(zhuǎn)盤停止時,指針落在哪一區(qū)域就可以獲得相應(yīng)的獎品,下表是活動進(jìn)行中的一組統(tǒng)計數(shù)據(jù):
(1)計算并完成表格:
轉(zhuǎn)動轉(zhuǎn)盤的次數(shù)n | 100 | 150 | 200 | 500 | 800 | 1000 |
落在“鉛筆”的次數(shù)m | 68 | 111 | 136 | 345 | 546 | 701 |
落在“鉛筆”的頻率 |
(2)假如你去轉(zhuǎn)動該轉(zhuǎn)盤一次,你獲得鉛筆的概率約是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)據(jù)21、12、18、16、20、21的眾數(shù)和中位數(shù)分別是( )
A.21和19
B.21和17
C.20和19
D.20和18
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB、AC與⊙O相切于點B、C,∠A=50°,P為⊙O上異于B、C的一個動點,則∠BPC的度數(shù)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)過點M(4,-2)與點N(x,y)的直線平行于x軸,且點N到y軸的距離等于5,由點N的坐標(biāo)是( )
A. (5,2)或(-5,-2)B. (5,-2)或(-5,-2)
C. (5,-2)或(-5,2)D. (5,-2)或(-2,-2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】全面兩孩政策實施后,甲,乙兩個家庭有了各自的規(guī)劃.假定生男生女的概率相同,回答下列問題:
(1)甲家庭已有一個男孩,準(zhǔn)備再生一個孩子,則第二個孩子是女孩的概率是 ;
(2)乙家庭沒有孩子,準(zhǔn)備生兩個孩子,求至少有一個孩子是女孩的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com