【題目】1是一種可折疊臺燈,它放置在水平桌面上,將其抽象成圖2,其中點B,E,D均為可轉動點.現(xiàn)測得AB=BE=ED=CD=15cm,經(jīng)多次調試發(fā)現(xiàn)當點B,E所在直線垂直經(jīng)過CD的中點F時(如圖3所示)放置較平穩(wěn).

1)求平穩(wěn)放置時燈座DC與燈桿DE的夾角的大;

2)為保護視力,寫字時眼睛離桌面的距離應保持在30cm,為防止臺燈刺眼,點A離桌面的距離應不超過30cm,求臺燈平穩(wěn)放置時ABE的最大值.(結果精確到0.01°,參考數(shù)據(jù): ≈1.732sin7.70°≈0.134,cos82.30°≈0.134,可使用科學計算器)

【答案】(1)、60°;(2)、97.34°.

【解析】試題分析:(1)、由題意得:DF=CD=7.5cmEF⊥CD,根據(jù)三角函數(shù)的定義即可得到結論;(2)、如圖3,過AAH⊥BEEB的延長線于H,求得EF=15×=,根據(jù)cos∠ABH=≈0.134,根據(jù)得到結論.

試題解析:(1)、由題意得:DF=CD=cm,EF⊥CD∴cosD=, ∴∠D=60°;

答:平穩(wěn)放置時燈座DC與燈桿DE的夾角是60°

(2)、如圖3,過AAH⊥BEEB的延長線于H, ∴HF=30, ∵EF=15×=,

∴BH=30﹣BE﹣EF=15﹣∴cos∠ABH=≈0.134, ∴∠ABH≈82.26°, ∴∠ABE=97.34°

答:臺燈平穩(wěn)放置時∠ABE的最大值是97.34°

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】【知識背景】在學習計算框圖時,可以用“ ”表示數(shù)據(jù)輸入、輸出框;用“ ”表示數(shù)據(jù)處理和運算框;用“ ”表示數(shù)據(jù)判斷框(根據(jù)條件決定執(zhí)行兩條路徑中的某一條)

【嘗試解決】
(1)①如圖1,當輸入數(shù)x=﹣2時,輸出數(shù)y=;
②如圖2,第一個“ ”內,應填; 第二個“ ”內,應填;
(2)①如圖3,當輸入數(shù)x=﹣1時,輸出數(shù)y=;②如圖4,當輸出的值y=17,則輸入的值x=
(3)為鼓勵節(jié)約用水,決定對用水實行“階梯價”:當每月用水量不超過10噸時(含10噸),以3元/噸的價格收費;當每月用水量超過10噸時,超過部分以4元/噸的價格收費.請設計出一個“計算框圖”,使得輸入數(shù)為用水量x,輸出數(shù)為水費y.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商店需要購進甲、乙兩種商品共160件,其進價和售價如下表:(注:獲利=售價-進價)

(1)若商店計劃銷售完這批商品后能獲利1 100元,請問甲、乙兩種商品應分別購進多少件?

(2)若商店計劃投入資金少于4300元,且銷售完這批商品后獲利多于1260元,請問有哪幾種購貨方案?并指出獲利最大的購貨方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知⊙O的半徑是4,OP=3,則點P與⊙O的位置關系是( )
A.點P在圓上
B.點P在圓內
C.點P在圓外
D.不能確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】圓上各點到圓心的距離都等于________,到圓心距離等于半徑的點都在________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知ABC是等腰三角形,AB=AC

1)特殊情形:如圖1,當DEBC時,有DB      EC.(填,“=”

2)發(fā)現(xiàn)探究:若將圖1中的ADE繞點A順時針旋轉αα180°)到圖2位置,則(1)中的結論還成立嗎?若成立,請給予證明;若不成立,請說明理由.

3)拓展運用:如圖3,P是等腰直角三角形ABC內一點,ACB=90°,且PB=1,PC=2,PA=3,求BPC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】記M1=﹣2,M2=(﹣2)×(﹣2),M3=(﹣2)×(﹣2)×(﹣2),…,Mn=
(1)填空:M5= , M50 是一個數(shù)(填“正”或“負”)
(2)計算:①2M6+M7;②4M7+2M8;
(3)直接寫出2016Mn+1008Mn+1的值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若3﹣2a>3﹣2b,則ab(填“>”“<”或“=”).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,AB=BC,∠ABC=90°,以AB為直徑的⊙OOC與點D,AD的延長線交BC于點E,過D作⊙O的切線交BC于點F.下列結論:①CD2=CE·CB;②4EF 2=ED ·EA;③∠OCB=∠EAB;④.其中正確的只有____________________.(填序號)

查看答案和解析>>

同步練習冊答案