【題目】如圖,已知中,,點(diǎn)以每秒1個單位的速度從運(yùn)動,同時點(diǎn)以每秒2個單位的速度從方向運(yùn)動,到達(dá)點(diǎn)后,點(diǎn)也停止運(yùn)動,設(shè)點(diǎn)運(yùn)動的時間為.

(1)點(diǎn)停止運(yùn)動時,的長;

(2) 兩點(diǎn)在運(yùn)動過程中,點(diǎn)點(diǎn)關(guān)于直線的對稱點(diǎn),是否存在時間,使四邊形為菱形?若存在,求出此時的值;若不存在,請說明理由.

(3) 兩點(diǎn)在運(yùn)動過程中,求使相似的時間的值.

【答案】(1)(2)(3)

【解析】

1)求出點(diǎn)Q的從BA的運(yùn)動時間,再求出AP的長,利用勾股定理即可解決問題.

2)如圖1中,當(dāng)四邊形PQCE是菱形時,連接QEACK,作QDBCD.根據(jù)DQ=CK,構(gòu)建方程即可解決問題.

3)分兩種情形:如圖3-1中,當(dāng)∠APQ=90°時,如圖3-2中,當(dāng)∠AQP=90°時,分別構(gòu)建方程即可解決問題.

1)在RtABC中,∵∠C=90°AC=6,BC=8,

AB==10,

點(diǎn)Q運(yùn)動到點(diǎn)A時,t==5,

AP=5,PC=1,

RtPBC中,PB=

2)如圖1中,當(dāng)四邊形PQCE是菱形時,連接QEACK,作QDBCD

∵四邊形PQCE是菱形,

PCEQ,PK=KC,

∵∠QKC=QDC=DCK=90°,

∴四邊形QDCK是矩形,

DQ=CK,

解得t=

t=s時,四邊形PQCE是菱形.

3)如圖2中,當(dāng)∠APQ=90°時,

∵∠APQ=C=90°,

PQBC,

,

如圖3中,當(dāng)∠AQP=90°時,

∵△AQPACB,

,

,

綜上所述,s時,APQ是直角三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtAOB的平分線ON上依次取點(diǎn)C,F(xiàn),M,過點(diǎn)CDEOC,分別交OA,OB于點(diǎn)D,E,以FM為對角線作菱形FGMH.已知∠DFE=GFH=120°,F(xiàn)G=FE,設(shè)OC=x,圖中陰影部分面積為y,則yx之間的函數(shù)關(guān)系式是( )

A. y= B. y= C. y=2 D. y=3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我縣第一屆運(yùn)動會需購買A,B兩種獎品,若購買A種獎品4件和B種獎品3件,共需85元;若購買A種獎品3件和B種獎品1件,共需45元.

1)求AB兩種獎品的單價各是多少元?

2)運(yùn)動會組委會計劃購買AB兩種獎品共100件,購買費(fèi)用不超過1150元,且A種獎品的數(shù)量不大于B種獎品數(shù)量的3倍,設(shè)購買A種獎品m件,購買總費(fèi)用W元,寫出W(元)與m(件)之間的函數(shù)關(guān)系式,求出自變量m的取值范圍,并設(shè)計出購買總費(fèi)用最少的方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】墊球是排球隊常規(guī)訓(xùn)練的重要項目之一.下列圖表中的數(shù)據(jù)是甲、乙、丙三人每人十次墊球測試的成績.測試規(guī)則為連續(xù)接球10個,每墊球到位1個記1分.

運(yùn)動員甲測試成績表

測試序號

1

2

3

4

5

6

7

8

9

10

成績(分)

7

6

8

7

7

5

8

7

8

7

1)寫出運(yùn)動員甲測試成績的眾數(shù)和中位數(shù);

2)在他們?nèi)酥羞x擇一位墊球成績優(yōu)秀且較為穩(wěn)定的接球能手作為自由人,你認(rèn)為選誰更合適?為什么?(參考數(shù)據(jù):三人成績的方差分別為、、)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】松山區(qū)種子培育基地用A,BC三種型號的甜玉米種子共1500粒進(jìn)行發(fā)芽試驗(yàn),從中選出發(fā)芽率高的種子進(jìn)行推廣,通過試驗(yàn)知道,C型號種子的發(fā)芽率為80%,根據(jù)試驗(yàn)數(shù)據(jù)繪制了下面兩個不完整的統(tǒng)計圖:

1)求C型號種子的發(fā)芽數(shù);

2)通過計算說明,應(yīng)選哪種型號的種子進(jìn)行推廣?

3)如果將所有已發(fā)芽的種子放在一起,從中隨機(jī)取出一粒,求取到C型號發(fā)芽種子的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在數(shù)軸上,一動點(diǎn)從原點(diǎn)出發(fā),沿直線以每秒鐘個單位長度的速度來回移動,其移動方式是先向右移動個單位長度,再向左移動個單位長度,又向右移動個單位長度,再向左移動個單位長度,又向右移動個單位長度

1)求出秒鐘后動點(diǎn)所處的位置;

2)如果在數(shù)軸上還有一個定點(diǎn),且與原點(diǎn)相距20個單位長度,問:動點(diǎn)從原點(diǎn)出發(fā),可能與點(diǎn)重合嗎?若能,則第一次與點(diǎn)重合需多長時間?若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料: 小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號的式子可以寫成另一個式子的平方,如:,善于思考的小明進(jìn)行了以下探索:

設(shè)(其中均為整數(shù)),則有

.這樣小明就找到了一種把部分的式子化為平方式的方法.

請你仿照小明的方法探索并解決下列問題:

當(dāng)均為正整數(shù)時,若,用含m、n的式子分別表示,得   ,   

2)利用所探索的結(jié)論,找一組正整數(shù),填空:    (      )2;

3)若,且均為正整數(shù),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O是坐標(biāo)原點(diǎn),四邊形ABCO是菱形,點(diǎn)A的坐標(biāo)為(﹣3,4),點(diǎn)Cx軸的正半軸上,直線ACy軸于點(diǎn)M,AB邊交于y軸于點(diǎn)H

1)連接BM,動點(diǎn)P從點(diǎn)A出發(fā),沿折線ABC方向以1個單位/秒的速度向終點(diǎn)C勻速運(yùn)動,設(shè)PMB的面積為SS0),點(diǎn)P的運(yùn)動時間為t秒,求St之間的函數(shù)關(guān)系式(要求寫出自變量t的取值范圍);

2)在(1)的情況下,當(dāng)點(diǎn)P在線段AB上運(yùn)動時,是否存在以BM為腰的等腰三角形BMP?如存在,求出t的值;如不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,AB是☉O的直徑,C為☉O上一點(diǎn),直線CD與☉O相切于點(diǎn)C,AD⊥CD,垂足為D.

(1)求證:△ACD∽△ABC.

(2)如圖2,將直線CD向下平移與☉O相交于點(diǎn)C,G,但其他條件不變.AG=4,BG=3,tan∠CAD的值.

查看答案和解析>>

同步練習(xí)冊答案