精英家教網 > 初中數學 > 題目詳情
拋物線的對稱軸是
A.直線 x=2      B. 直線x=" -2"       C.直線x= -3      D.直線x=3
A

試題分析:拋物線的頂點坐標為(2,3),頂點坐標就是拋物線與其對稱軸的交點,所以拋物線的對稱軸與其頂點坐標的橫坐標的值相等,所以拋物線的對稱軸是直線 x=2
點評:本題考查拋物線,解答本題的關鍵是掌握拋物線的概念,性質,會根據拋物線的解析式求其對稱軸
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

拋物線與x軸交于A,B兩點(點A在點B左側),與y軸交于點C,點D為頂點.

(1)求點B及點D的坐標.
(2)連結BD,CD,拋物線的對稱軸與x軸交于點E.
①若線段BD上一點P,使∠DCP=∠BDE,求點P的坐標.
②若拋物線上一點M,作MN⊥CD,交直線CD于點N,使∠CMN=∠BDE,求點M的坐標.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知兩直線l1,l2分別經過點A(1,0),點B(﹣3,0),并且當兩直線同時相交于y軸正半軸的點C時,恰好有l(wèi)1⊥l2,經過點A、B、C的拋物線的對稱軸與直線l1交于點K,如圖所示.

(1)求點C的坐標,并求出拋物線的函數解析式;
(2)拋物線的對稱軸被直線l1,拋物線,直線l2和x軸依次截得三條線段,問這三條線段有何數量關系?請說明理由;
(3)當直線l2繞點C旋轉時,與拋物線的另一個交點為M,請找出使△MCK為等腰三角形的點M,簡述理由,并寫出點M的坐標.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

某公司經銷某品牌運動鞋,年銷售量為10萬雙,每雙鞋按250元銷售,可獲利25﹪設每雙鞋的成本價為元.

(1)試求的值;
(2)為了擴大銷售量,公司決定拿出一定量的資金做廣告,根據市場調查,若每年投入廣告費為(萬元)時,產品的年銷售量將是原來年銷售量的倍,且之間的關系滿足.請根據圖象提供的信息,求出之間的函數關系式;
(3)在(2)的條件下求年利潤S(萬元)與廣告費(萬元)之間的函數關系式,并請回答廣告費(萬元)在什么范圍內,公司獲得的年利潤S(萬元)隨廣告費的增大而增多?(注:年利潤S=年銷售總額-成本費-廣告費)

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

定義[a,b,c]為函數y=ax2+bx+c的特征數,下面給出特征數為 [m,1-m,-1]的函數的一些結論:
① 當m=-1時,函數圖象的頂點坐標是(1,0);
② 當m>0時,函數圖象截x軸所得的線段長度大于1;
③ 當m<0時,函數在x>時,y隨x的增大而減;
④ 不論m取何值,函數圖象經過一個定點.
其中正確的結論有            ( )
A.4個B.3個C.2個D.1個

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,已知拋物線y=-x2bx+c經過點A(0,1)、B(3,)兩點,BC⊥x軸,垂足為C.點P是線段AB上的一動點(不與A,B重合),過點P作x軸的垂線交拋物線于點M,設點P的橫坐標為t.

(1)求此拋物線的函數表達式;
(2)連結AM、BM,設△AMB的面積為S,求S關于t的函數關系式,并求出S的最大值;
(3)連結PC,當t為何值時,四邊形PMBC是菱形.(10分)

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,拋物線與x軸相交于B,C兩點,與y軸相交于點AP(2a,-4a2+7a+2)(a是實數)在拋物線上,直線y=k x +b經過A,B兩點.

(1)求直線AB的解析式;
(2)平行于y軸的直線x=2交直線AB于點D,交拋物線于點E
①直線x=t(0≤t≤4)與直線AB相交F,與拋物線相交于點G.若FGDE=3∶4,求t的值;
②將拋物線向上平移m(m>0)個單位,當EO平分∠AED時,求m的值.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

某商廈將進價為2000元的冰箱以2400元售出,平均每天能售出8臺,為了配合國家“家電下鄉(xiāng)”政策的實施,商場決定采取適當的降價措施.調查表明:這種冰箱的售價每降低50元,平均每天就能多售出4臺.
(1)假設每臺冰箱降價50x元,商場每天銷售這種冰箱的利潤是y元,請寫出yx之間的函數表達式;(不要求寫自變量的取值范圍)
(2)商場要想在這種冰箱銷售中每天盈利4800元,同時又要使百姓得到實惠,每臺冰箱應降價多少元?
(3)每臺冰箱降價多少元時,商場每天銷售這種冰箱的利潤最高?最高利潤是多少?

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,點A的坐標為(7,0),點B的坐標為(3,4),

(1)求經過O、A、B三點的拋物線解析式;
(2)將線段AB繞A點順時針旋轉75°至AC,直接寫出點C的坐標.
(3)在y軸上找一點P,第一象限找一點Q,使得以O、B、Q、P為頂點的四邊形是菱形,求出點Q的坐標;
(4)△OAB的邊OB上有一動點M,過M作MN//OA交AB于N,將△BMN沿MN翻折得△DMN,設MN=x,△DMN與△OAB重疊部分的面積為y,求出y與x之間的函數關系式,并求出重疊部分面積的最大值.

查看答案和解析>>

同步練習冊答案