【題目】如圖,直線l與⊙相切于點D,過圓心O作EF∥l交⊙O于E、F兩點,點A是⊙O上一點,連接AE,AF,并分別延長交直線于B、C兩點;若⊙的半徑R=5,BD=12,則∠ACB的正切值為

【答案】
【解析】解:連接OD,作EH⊥BC,如圖,
∵EF為直徑,
∴∠A=90°,
∵∠B+∠C=90°,∠B+∠BEH=90°,
∴∠BEH=∠C,
∵直線l與⊙相切于點D,
∴OD⊥BC,
而EH⊥BC,EF∥BC,
∴四邊形EHOD為正方形,
∴EH=OD=OE=HD=5,
∴BH=BD﹣HD=7,
在Rt△BEH中,tan∠BEH= =
∴tan∠ACB=
故答案為
連接OD,作EH⊥BC,如圖,先利用圓周角定理得到∠A=90°,再利用等角的余角相等得到∠BEH=∠C,接著根據(jù)切線的性質(zhì)得到OD⊥BC,易得四邊形EHOD為正方形,則EH=OD=OE=HD=5,所以BH=7,然后根據(jù)正切的定義得到tan∠BEH= ,從而得到tan∠ACB的值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,點O是邊BC的中點,連接DO并延長,交AB延長線于點E,連接BD,EC

(1)求證:四邊形BECD是平行四邊形;

(2)若∠A=50°,則當(dāng)∠BOD= ______ °時,四邊形BECD是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在△ABC中,∠ABC=90°,AB=3,BC=4.點Q是線段AC上的一個動點,過點Q作AC的垂線交線段AB(如圖1)或線段AB的延長線(如圖2)于點P.
(1)當(dāng)點P在線段AB上時,求證:△AQP∽△ABC;
(2)當(dāng)△PQB為等腰三角形時,求AP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,一個多邊形的每一個外角都是它相鄰的內(nèi)角的.試求出:(1)這個多邊形的每一個外角的度數(shù);(2)求這個多邊形的內(nèi)角和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD,點F為正方形ABCD內(nèi)一點,BFC逆時針旋轉(zhuǎn)后能與BEA重合

(1)旋轉(zhuǎn)中心是點 ,旋轉(zhuǎn)角度為 度;

(2)判斷BEF的形狀為 ;

(3)若∠BFC=90°,說明AEBF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,所有正三角形的一邊平行于x軸,一頂點在y軸上,從內(nèi)到外,它們的邊長依次為2,4,6,8,…,頂點依次用A1、A2、A3、A4、…表示,其中A1A2與x軸、底邊A1A2與A4A5、A4A5與A7A8、…均相距一個單位,則A2017的坐標是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】8分)如圖所示,在四邊形ABCD中,AB=2,BC=2CD=1,AD=5,且∠C=90°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將1, , , 按下列方式排列.若規(guī)定(m,n)表示第m排從左向右第n個數(shù),則(5,4)(15,2)表示的兩數(shù)之積是 _________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)的圖象經(jīng)過點A(2,1),B(﹣1,﹣3).

(1)求此一次函數(shù)的解析式;

(2)求此一次函數(shù)的圖象與x軸、y軸的交點坐標;

(3)求此一次函數(shù)的圖象與兩坐標軸所圍成的三角形面積.

查看答案和解析>>

同步練習(xí)冊答案