【題目】如圖,已知E、F分別為平行四邊形ABCD的對(duì)邊AD、BC上的點(diǎn),且DE=BF,EM⊥AC于M,F(xiàn)N⊥AC于N,EF交AC于點(diǎn)O,
求證:
(1)EM=FN;
(2)EF與MN互相平分.
【答案】
(1)證明:∵四邊形ABCD是平行四邊形,∴AD∥BC,AD=BC,
∴∠EAM=∠FCN,
∵DE=BF,
∴AE=CF,∵EM⊥AC于M,F(xiàn)N⊥AC于N,∴∠AME=∠CNF=90°,
在△AEM和△CFN中, ,
∴△AEM≌△CFN(AAS),
∴EM=FN
(2)證明:連接EN、FM,如圖所示:
∵EM⊥AC,F(xiàn)N⊥AC,
∴∠AME=∠EMN=∠FNC=∠FNM=90°,
∴EM∥FN,
又∵由(1)得EM=FN,
∴四邊形EMFN是平行四邊形,
∴EF與MN互相平分.
【解析】(1)根據(jù)平行四邊形的性質(zhì)得出AD∥BC,AD=BC,,進(jìn)而得出∠EAM=∠FCN,根據(jù)等式的性質(zhì)及垂直的定義知AE=CF,∠AME=∠CNF=90°,用AAS判斷出△AEM≌△CFN,根據(jù)三角形全等的性質(zhì)得出結(jié)論;
(2)連接EN、FM根據(jù)垂直于同一直線的兩條直線互相平行得出EM∥FN,又EM=FN,利用平行四邊形的判定方法判斷出四邊形EMFN是平行四邊形,根據(jù)平行四邊形的性質(zhì)得出結(jié)論。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義新運(yùn)算“※”:x※y=xy+x2﹣y2 , 化簡(jiǎn)(2a+3b)※(2a﹣3b),并求出當(dāng)a=2,b=1時(shí)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線a平行于x軸,點(diǎn)M(-2,-3)是直線a上的一個(gè)點(diǎn).若點(diǎn)N也是直線a上的一個(gè)點(diǎn),MN=5,則點(diǎn)N的坐標(biāo)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在以下圖案中,既是軸對(duì)稱(chēng)圖形,又是中心對(duì)稱(chēng)圖形的有( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線和雙曲線(k為正整數(shù))交于A,B兩點(diǎn).
(1)當(dāng)k=1時(shí),求A、B兩點(diǎn)的坐標(biāo);
(2)當(dāng)k=2時(shí),求△AOB的面積;
(3)當(dāng)k=1時(shí),△OAB的面積記為S1,當(dāng)k=2時(shí),△OAB的面積記為S2,…,依此類(lèi)推,當(dāng)k=n時(shí),△OAB的面積記為Sn,若S1+S2+…+Sn=,求n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在正方形ABCD中,E,F(xiàn),G,H分別為邊AB,BC,CD,DA上的點(diǎn),HA=EB=FC=GD,連接EG,F(xiàn)H,交點(diǎn)為O.
(1)如圖1,連接GH,GF,求證:GH=GF;
(2)如圖2,連接EF,F(xiàn)G,GH,HE,試判斷四邊形EFGH的形狀,并證明你的結(jié)論;
(3)將正方形ABCD沿線段EG,HF剪開(kāi),再把得到的四個(gè)四邊形按圖3的方式拼接成一個(gè)四邊形.若正方形ABCD的邊長(zhǎng)為3cm,HA=EB=FC=GD=1cm,則圖3中陰影部分的面積為cm2 . (直接寫(xiě)結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列運(yùn)算正確的是( )
A.x4+x4=x8
B.(x﹣y)2=x2﹣y2
C.x3x4=x7
D.(2x2)3=2x6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了進(jìn)一步了解九年級(jí)500名學(xué)生的身體素質(zhì)情況,體育老師對(duì)九年級(jí)(1)班50名學(xué)生進(jìn)行一分鐘跳繩次數(shù)測(cè)試,以測(cè)試數(shù)據(jù)為樣本,繪制出部分頻數(shù)分布表和部分頻數(shù)分布直方圖如下所示:
組別 | 次數(shù)x | 頻數(shù)(人數(shù)) |
第l組 | 80≤x<100 | 6 |
第2組 | 100≤x<120 | 8 |
第3組 | 120≤x<140 | a |
第4組 | 140≤x<160 | 18 |
第5組 | 160≤x<180 | 6 |
請(qǐng)結(jié)合圖表完成下列問(wèn)題:
(1)表中的a=,次數(shù)在140≤x<160這組的頻率為;
(2)請(qǐng)把頻數(shù)分布直方圖補(bǔ)充完整;
(3)若九年級(jí)學(xué)生一分鐘跳繩次數(shù)(x)達(dá)標(biāo)要求是:x<120不合格;x≥120為合格,則這個(gè)年級(jí)合格的學(xué)生有人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,甲處表示2街與5巷的十字路口,乙處表示5街與2巷的十字路口,如果用(2,5)表示甲處的位置,那么“(2,5) (3,5) (4,5) (5,5) (5,4) (5,3) (5,2)”表示從甲處到乙處的一種路線.請(qǐng)你用有序數(shù)對(duì)寫(xiě)出幾種從甲處到乙處的路線.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com