【題目】如圖,在四邊形ABCD中,AB=AD,CD⊥BC,以AB為直徑的交AD于點(diǎn)E,CD=ED,連接BD交⊙O于點(diǎn)F.判斷BC與⊙O的位置關(guān)系.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是中國傳統(tǒng)數(shù)學(xué)重要的著作,奠定了中國傳統(tǒng)數(shù)學(xué)的基本框架.《九章算術(shù)》中記
載:“今有圓材,埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長一尺,間徑幾何?”(如圖①)
閱讀完這段文字后,小智畫出了一個(gè)圓柱截面示意圖(如圖②),其中BO⊥CD于點(diǎn)A,求間徑就是要求⊙O的直徑.再次閱讀后,發(fā)現(xiàn)AB=______寸,CD=____寸(一尺等于十寸),通過運(yùn)用有關(guān)知識(shí)即可解決這個(gè)問題.請(qǐng)你補(bǔ)全題目條件,并幫助小智求出⊙O的直徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD和正方形DEFG中,點(diǎn)G在CD上,DE=2,將正方形DEFG繞點(diǎn)D順時(shí)針旋轉(zhuǎn)60°,得到正方形DE′F′G′,此時(shí)點(diǎn)G′在AC上,連接CE′,則CE′+CG′=( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有長為30m的籬笆,一面利用墻(墻的最大可用長度為10m),圍成中間隔有一道籬笆(平行于AB)的矩形花圃,設(shè)花圃的一邊AB為xm,面積為ym2.
(1)求y與x的函數(shù)關(guān)系式;
(2)如果要圍成面積為48m2的花圃,AB的長是多少?
(3)能圍成比48m2更大的花圃嗎?如果能,請(qǐng)求出最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線與直線交于,兩點(diǎn),且點(diǎn)在軸上,點(diǎn)在軸的正半軸上.
(1)直接寫出點(diǎn)的坐標(biāo);
(2)若,求直線的解析式;
(3)若,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等邊三角形的邊長為,點(diǎn)為平面內(nèi)一動(dòng)點(diǎn),且,將點(diǎn)繞點(diǎn)按逆時(shí)針方向轉(zhuǎn)轉(zhuǎn),得到點(diǎn),連接,則的最大值__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直角三角形紙片ABC中,∠ACB=90°,AC≤BC,如圖,將紙片沿某條直線折疊,使點(diǎn)A落在直角邊BC上,記落點(diǎn)為D,設(shè)折痕與AB、AC邊分別交于點(diǎn)E、F.
(1)如果∠AFE=65°,求∠CDF的度數(shù);
(2)若折疊后的△CDF與△BDE均為等腰三角形,那么紙片中∠B的度數(shù)是多少?寫出你的計(jì)算過程,并畫出符合條件的折疊后的圖形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在矩形中,,.點(diǎn)從點(diǎn)出發(fā),沿運(yùn)動(dòng),速度為每秒2個(gè)單位長度;點(diǎn)從點(diǎn)出發(fā)向點(diǎn)運(yùn)動(dòng),速度為每秒1個(gè)單位長度.、兩點(diǎn)同時(shí)出發(fā),點(diǎn)運(yùn)動(dòng)到點(diǎn)時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng),設(shè)點(diǎn)的運(yùn)動(dòng)時(shí)間為(秒).連結(jié)、、、.
(1)點(diǎn)到點(diǎn)時(shí),____________;當(dāng)點(diǎn)到終點(diǎn)時(shí),的長度為_________;
(2)用含的代數(shù)式表示的長;
(3)當(dāng)的面積為9時(shí),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,過點(diǎn)B作BE⊥CD,垂足為E,連接AE,F為AE上的一點(diǎn),且∠BFE =∠C
(1)求證:△ABF∽△EAD;
(2)若AB=4,∠BAE=30°,求AE的長;
(3)在(1)、(2)的條件下,若AD=3,求BF的長(計(jì)算結(jié)果可含根號(hào))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com