【題目】如圖,△ABC和△BEC均為等腰直角三角形,且∠ACB=∠BEC=90°,AC=4 ,點P為線段BE延長線上一點,連接CP以CP為直角邊向下作等腰直角△CPD,線段BE與CD相交于點F
(1)求證: ;
(2)連接BD,請你判斷AC與BD有什么位置關系?并說明理由;
(3)設PE=x,△PBD的面積為S,求S與x之間的函數(shù)關系式.
【答案】
(1)
證明:∵△BCE和△CDP均為等腰直角三角形,
∴∠ECB=∠PCD=45°,∠CEB=∠CPD=90°,
∴△BCE∽△DCP,
∴
(2)
解:AC∥BD,
理由:∵∠PCE+∠ECD=∠BCD+∠ECD=45°,
∴∠PCE=∠BCD,
又∵ ,
∴△PCE∽△DCB,
∴∠CBD=∠CEP=90°,
∵∠ACB=90°,
∴∠ACB=∠CBD,
∴AC∥BD;
(3)
解:如圖所示:
作PM⊥BD于M,
∵AC=4 ,△ABC和△BEC均為等腰直角三角形,
∴BE=CE=4,
∵△PCE∽△DCB,
∴ ,即 = ,
∴BD= x,
∵∠PBM=∠CBD﹣∠CBP=45°,BP=BE+PE=4+x,
∴PM= ,
∴△PBD的面積S= BDPM= × x× = x2+2x.
【解析】(1)直接利用相似三角形的判定方法得出△BCE∽△DCP,進而得出答案;
(2)首先得出△PCE∽△DCB,進而求出∠ACB=∠CBD,即可得出AC與BD的位置關系;
。3)首先利用相似三角形的性質(zhì)表示出BD,PM的長,進而表示出△PBD的面積.此題主要考查了相似形綜合、平行線的判定方法以及相似三角形的判定與性質(zhì)等知識,正確表示出PM的長是解題關鍵.
科目:初中數(shù)學 來源: 題型:
【題目】某工程隊修建一條長1200m的道路,采用新的施工方式,工效提升了50%,結果提前4天完成任務.
(1)求這個工程隊原計劃每天修建道路多少米?
(2)在這項工程中,如果要求工程隊提前2天完成任務,那么實際平均每天修建道路的工效比原計劃增加百分之幾?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為聲援揚州“運河申遺”,某校舉辦了一次運河知識競賽,滿分10分,學生得分為整數(shù),成績達到6分以上(包括6分)為合格,達到9分以上(包含9分)為優(yōu)秀.這次競賽中甲乙兩組學生成績分布的條形統(tǒng)計圖如圖所示.
(1)補充完成下面的成績統(tǒng)計分析表:
組別 | 平均分 | 中位數(shù) | 方差 | 合格率 | 優(yōu)秀率 |
甲組 | 6.7 | 3.41 | 90% | 20% | |
乙組 | 7.5 | 1.69 | 80% | 10% |
(2)小明同學說:“這次競賽我得了7分,在我們小組中排名屬中游略偏上!”觀察上表可知,小明是 組的學生;(填“甲”或“乙”)
(3)甲組同學說他們組的合格率、優(yōu)秀率均高于乙組,所以他們組的成績好于乙組.但乙組同學不同意甲組同學的說法,認為他們組的成績要好于甲組.請你給出兩條支持乙組同學觀點的理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】市政府建設一項水利工程,某運輸公司承擔運送總量為106m3的土石方任務,該公司有甲、乙兩種型號的卡車共100輛,甲型車平均每天可以運送土石方80m3,乙型車平均每天可以運送土石方120m3,計劃100天完成運輸任務.
(1)該公司甲、乙兩種型號的卡車各有多少臺?
(2)如果該公司用原有的100輛卡車工作了40天后,由于工程進度的需要,剩下的所有運輸任務必須在50天內(nèi)完成,在甲型卡車數(shù)量不變情況下,公司至少應增加多少輛乙型卡車?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“春種一粒粟,秋收萬顆子”,唐代詩人李紳這句詩中的“粟”即谷子(去皮后則稱為“小米”),被譽為中華民族的哺育作物.我省有著“小雜糧王國”的美譽,谷子作為我省雜糧面積為2000萬畝,年總產(chǎn)量為150萬噸,我省谷子平均畝產(chǎn)量為160kg,國內(nèi)其他地區(qū)谷子的平均畝產(chǎn)量為60kg.請解答下列問題:
(1)求我省2016年谷子的種植面積是多少萬畝.
(2)2017年,若我省谷子的平均畝產(chǎn)量仍保持160kg不變,要使我省谷子的年總產(chǎn)量不低于52萬噸,那么,今年我省至少應再多種植多少萬畝的谷子?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知一個直角三角形紙片ACB,其中∠ACB=90°,AC=4,BC=3,E、F分別是AC、AB邊上點,連接EF.
(1)圖①,若將紙片ACB的一角沿EF折疊,折疊后點A落在AB邊上的點D處,且使S四邊形ECBF=3S△EDF , 求AE的長;
(2)如圖②,若將紙片ACB的一角沿EF折疊,折疊后點A落在BC邊上的點M處,且使MF∥CA.
①試判斷四邊形AEMF的形狀,并證明你的結論;
②求EF的長;
(3)如圖③,若FE的延長線與BC的延長線交于點N,CN=1,CE= ,求 的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知:在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,點C,D,E三點在同一條直線上,連接BD.圖中的CE、BD有怎樣的大小和位置關系?試證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,設正方體ABCD-A1B1C1D1的棱長為1,黑甲殼蟲從點A出發(fā),白甲殼蟲從點C1出發(fā),它們以相同的速度分別沿棱向前爬行.黑甲殼蟲爬行的路線是:AA1→A1D1→D1C1→C1C→CB→BA→AA1→A1D1…,白甲殼蟲爬行的路線是:C1C→CB→BB1→B1C1→C1C→CB…,那么當黑、白兩個甲殼蟲各爬行完第2018條棱分別停止在所到的正方體頂點處時,它們之間的最短路程的平方是( )
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com