【題目】如圖 ,BE平分ABC的外角∠ABD,F AC的中點,過 F點作 AC的垂線交 BE的反向延長線于 G點, EG.若∠ABC80°,則∠ACG的度數(shù)為是_____

【答案】50°.

【解析】

過點GGMBCM, GNABN,根據(jù)HL得到△CGM≌△AGN,故根據(jù)八字形的角得到∠AGC=ABC=80°,再根據(jù)等腰三角形的性質求出∠ACG=∠CAG的度數(shù).

過點GGMBCM, GNABN,

FGAC的垂直平分線,∴AG=CG,

BE平分△ABC的外角∠ABD,∴BG平分∠NBM,

NG=MG,

∴RtCGMRtAGNHL

∠GCM=GAN,

∠AGC=ABC=80°(八字型)

AG=CG,

∠ACG=∠CAG=180°-80°=50°,

故填:50°.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,正方形的頂點軸正半軸上,頂點軸正半軸上,、的長分別是一元二次方程的兩個根().

1)求點的坐標;

2)求直線的解析式;

3)在直線上是否存在點,使為等腰三角形?若存在,請直接寫出點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】電影阿凡達自上映以來取得了空前的票房收入,某小區(qū)居民決定通過居委會向影院購買一些3D票供每戶家庭觀看,最終購得成人票數(shù)量是學生(孩子)票數(shù)量的3倍,購買的總費 用不低干2200元,但不高于2500

(1)電影院成人票售價20/人,學生票售價為50/人,問:有哪幾種購買方案?

(2)在(1)的方案中,哪一種方案的總費用最少?最少費用是多少元?

(3)由于當天電影院同時播放拆彈部隊,故決定成人票打九折,學生票打八折,用(2)中的最少費用最多還可以多買多少張成人票和學生票?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖 ,∠E=∠F90°,∠B=∠CACAB,給出下列結論:① 1=∠2;② BECF;③ ACNABM;④ CDDN,其中正確的結論有( )個

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AO,B三點在同一直線上,∠BOD與∠BOC互補.

1)∠AOC與∠BOD的度數(shù)相等嗎,為什么?

2)已知OM平分∠AOC,若射線ON在∠COD的內部,且滿足∠AOC與∠MON互余;

AOC32°,求∠MON的度數(shù);

試探究∠AON與∠DON之間有怎樣的數(shù)量關系,請寫出結論并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小剛準備用一段長 44 米的籬笆圍成三角形,用于養(yǎng)雞。已知一條邊長 x 米,第二條邊是第一條邊的 3 倍多 6 米。

1)若能圍成一個等腰三角形,求三邊長

2)若第一邊長最短,寫出 x 的取值范圍 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,∠ACB =90°,AC = BC =2,AB =,點PAB邊上的點(異于點A,B),點QBC邊上的點(異于點B,C),且∠CPQ =45°.CPQ是等腰三角形時,CQ的長為________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,EAD的中點,延長CEBA交于點F,連接AC,DF

(1)求證:四邊形ACDF是平行四邊形;

(2)當CF平分∠BCD時,寫出BCCD的數(shù)量關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是正三角形內的一點,且,.若將繞點逆時針旋轉60°后,得到,則________.

查看答案和解析>>

同步練習冊答案