【題目】如圖,在平面直角坐標(biāo)系中,有若千個(gè)整數(shù)點(diǎn),其順序按圖中“”方向排列,如….根據(jù)這個(gè)規(guī)律探索可得,第個(gè)點(diǎn)的坐標(biāo)為__________.
【答案】
【解析】
從圖中可以看出橫坐標(biāo)為1的有一個(gè)點(diǎn),橫坐標(biāo)為2的有2個(gè)點(diǎn),橫坐標(biāo)為3的有3個(gè)點(diǎn),依此類推橫坐標(biāo)為n的有n個(gè)點(diǎn)題目要求寫出第100個(gè)點(diǎn)的坐標(biāo),我們可以通過加法計(jì)算算出第100個(gè)點(diǎn)位于第幾列第幾行,然后對(duì)應(yīng)得出坐標(biāo)規(guī)律,將行列數(shù)代入規(guī)律式.
解:在橫坐標(biāo)上,第一列有一個(gè)點(diǎn),第二列有2個(gè)點(diǎn).…第n個(gè)有n個(gè)點(diǎn),并且奇數(shù)列點(diǎn)數(shù)對(duì)稱而偶數(shù)列點(diǎn)數(shù)y軸上方比下方多一個(gè),
所以奇數(shù)列的坐標(biāo)為 ;
偶數(shù)列的坐標(biāo)為 ,
由加法推算可得到第100個(gè)點(diǎn)位于第14列自上而下第六行.
14代入上式得(14,)即(14,2),
故答案為(14,2).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在有理數(shù)范圍內(nèi),我們定義三個(gè)數(shù)之間的新運(yùn)算“”法則:abc=|a+b+c|-a+b-c,例如:12(-3)=|1+2+(-3)|-1+2-(-3)=4.在這6個(gè)數(shù)中,任意取三個(gè)數(shù)作為a、b、c的值,則abc的最大值為___________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,、分別為數(shù)軸上的兩點(diǎn),點(diǎn)對(duì)應(yīng)的數(shù)為,點(diǎn)對(duì)應(yīng)的數(shù)為.
(1)請(qǐng)寫出與、兩點(diǎn)距離相等的點(diǎn)所對(duì)應(yīng)的數(shù);
(2)現(xiàn)有一只電子螞蟻從點(diǎn)出發(fā),以單位/秒的速度向左運(yùn)動(dòng),同時(shí)另一只電子螞蟻恰好從點(diǎn)出發(fā),以單位/秒的速度向右運(yùn)動(dòng),設(shè)兩只電子螞蟻在數(shù)軸上的點(diǎn)相遇,你知道點(diǎn)對(duì)應(yīng)的數(shù)是多少嗎?(寫出計(jì)算過程)
(3)在題(2)中,若運(yùn)動(dòng)t秒鐘時(shí),兩只螞蟻的距離為10,求出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】己知AB是⊙0的直徑,AP是⊙0的切線,A是切點(diǎn),BP與⊙0交于點(diǎn)C.
(1)如圖①,若AB=2,∠P=30,求AP的長.(結(jié)果保留根號(hào))
(2)如圖②,若D為AP的中點(diǎn),∠P=30,求證:直線CD是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是矩形ABCD的對(duì)角線AC的中點(diǎn),E是AD的中點(diǎn).若AB=6,AD=8,則四邊形ABPE的周長為( )
A. 14 B. 16 C. 17 D. 18
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,公路 MN 和公路 PQ 在點(diǎn) P 處交會(huì),且∠QPN=30°.點(diǎn) A 處有一所中學(xué),AP=160m,一輛拖拉機(jī)從 P 沿公路 MN 前行,假設(shè)拖拉機(jī)行駛時(shí)周圍 100m 以內(nèi)會(huì)受到噪聲影響,那么該所中學(xué)是否會(huì)受到噪聲影響,請(qǐng)說明理由,若受影響,已知拖拉機(jī)的速度為 18km/h,那么學(xué)校受影響的時(shí)間為多長?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+4x+c與y軸交于點(diǎn)A(0,5),與x軸交于點(diǎn)E,B,點(diǎn)B坐標(biāo)為(5,0).
(1)求二次函數(shù)解析式及頂點(diǎn)坐標(biāo);
(2)過點(diǎn)A作AC平行于x軸,交拋物線于點(diǎn)C,點(diǎn)P為拋物線上的一點(diǎn)(點(diǎn)P在AC上方),作PD平行于y軸交AB于點(diǎn)D,問當(dāng)點(diǎn)P在何位置時(shí),四邊形APCD的面積最大?并求出最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E在ABCD內(nèi)部,AF∥BE,DF∥CE,設(shè)ABCD的面積為S1,四邊形AEDF的面積為S2,則的值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究:如圖1 ,直線l與坐標(biāo)軸的正半軸分別交于A,B兩點(diǎn),與反比例函數(shù)的圖象交于C,D兩點(diǎn)(點(diǎn)C在點(diǎn)D的左邊),過點(diǎn)C作CE⊥y軸于點(diǎn)E,過點(diǎn)D作DF⊥x軸于點(diǎn)F,CE與DF交于點(diǎn)G(a,b).
(1)若,請(qǐng)用含n的代數(shù)式表示;
(2)求證: ;
應(yīng)用:如圖2,直線l與坐標(biāo)軸的正半軸分別交于點(diǎn)A,B兩點(diǎn),與反比例函數(shù)的圖象交于點(diǎn)C,D兩點(diǎn)(點(diǎn)C在點(diǎn)D的左邊),已知,△OBD的面積為1,試用含m的代數(shù)式表示k.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com