【題目】如圖,已知AB為⊙O的直徑,點(diǎn)C、D在⊙O上,CD=BD,E、F是線段AC、AB的延長線上的點(diǎn),并且EF與⊙O相切于點(diǎn)D.
(1)求證:∠A=2∠BDF;
(2)若AC=3,AB=5,求CE的長.
【答案】(1)見解析:(2)CE=1.
【解析】
(1)連接AD,如圖,先證明得到∠1=∠2,再根據(jù)圓周角定理得到∠ADB=90°,根據(jù)切線的性質(zhì)得到OD⊥EF,然后證明∠1=∠4得到結(jié)論;
(2)連接BC交OD于F,如圖,根據(jù)圓周角定理得到∠ACB=90°,再根據(jù)垂徑定理,由得到OD⊥BC,則CF=BF,所以OF=AC=,從而得到DF=1,然后證明四邊形CEDF為矩形得CE=1.
(1)證明:連接AD,如圖,
∵CD=BD,
∴,
∴∠1=∠2,
∵AB為直徑,
∴∠ADB=90°,
∴∠1+∠ABD=90°,
∵EF為切線,
∴OD⊥EF,
∴∠3+∠4=90°,
∵OD=OB,
∴∠3=∠OBD,
∴∠1=∠4,
∴∠A=2∠BDF;
(2)解:連接BC交OD于F,如圖,
∵AB為直徑,
∴∠ACB=90°,
∵,
∴OD⊥BC,
∴CF=BF,
∴OF=AC=,
∴DF=﹣=1,
∵∠ACB=90°,OD⊥BC,OD⊥EF,
∴四邊形CEDF為矩形,
∴CE=DF=1.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市教育局組織全市中小學(xué)教師開展“訪千家”活動.活動過程中,教育局隨機(jī)抽取了近兩周家訪的教師人數(shù)及家訪次數(shù),將采集到的全部數(shù)據(jù)按家訪次數(shù)分成五類,由甲、乙兩人分別繪制了下面的兩幅統(tǒng)計圖(圖都不完整).請根據(jù)以上信息,解答下列問題:
(1)請把這福條形統(tǒng)計圖補(bǔ)充完整(畫圖后請標(biāo)注相應(yīng)的數(shù)據(jù)).
(2)在采集到的數(shù)據(jù)中,近兩周平均每位教師家訪___________次.
(3)若該市有12000名教師,求近兩周家訪不少于3次的教師約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某課外學(xué)習(xí)小組根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對函數(shù)y=x3﹣3x的圖象與性質(zhì)進(jìn)行了探究.請補(bǔ)充完整以下探索過程:
(1)列表:
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | … | ||||
y | … | ﹣2 | m | 2 | 0 | n | 2 | … |
請直接寫出m,n的值;
(2)根據(jù)上表中的數(shù)據(jù),在平面直角坐標(biāo)系內(nèi)補(bǔ)全該函數(shù)的圖象;
(3)若函數(shù)y=x3﹣3x的圖象上有三個點(diǎn)A(x1,y1),B(x2,y2),C(x3,y3),且x1<﹣2<x2<2<x3,則y1,y2,y3之間的大小關(guān)系為 (用“<”連接);
(4)若方程x3﹣3x=k有三個不同的實(shí)數(shù)根.請根據(jù)函數(shù)圖象,直接寫出k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AN是⊙M的直徑,NB∥x軸,AB交⊙M于點(diǎn)C.
(1)若點(diǎn)A(0,6),N(0,2),∠ABN=30°,求點(diǎn)B的坐標(biāo);
(2)若D為線段NB的中點(diǎn),求證:直線CD是⊙M的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A(﹣1,﹣1),點(diǎn)B(1,1),若拋物線y=x2﹣ax+a+1與線段AB有兩個不同的交點(diǎn)(包含線段AB端點(diǎn)),則實(shí)數(shù)a的取值范圍是( 。
A.≤a<﹣1B.≤a≤﹣1C.<a<﹣1D.<a≤﹣1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=a,點(diǎn)E,F在對角線BD上,且∠ECF=∠ABD,將△BCE繞點(diǎn)C旋轉(zhuǎn)一定角度后,得到△DCG,連接FG.則下列結(jié)論:
①∠FCG=∠CDG;
②△CEF的面積等于;
③FC平分∠BFG;
④BE2+DF2=EF2;
其中正確的結(jié)論是_____.(填寫所有正確結(jié)論的序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果點(diǎn)P(2x+6,x-4)在平面直角坐標(biāo)系的第四象限內(nèi),那么x的取值范圍在數(shù)軸上可表示為
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD中,AB=BC=CD,∠ABC=60°,點(diǎn)E在AB上,∠AED=∠CEB,AD=5,DE+CE=,則BD的長為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com