【題目】某課外學(xué)習(xí)小組根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)y=x3﹣3x的圖象與性質(zhì)進行了探究.請補充完整以下探索過程:
(1)列表:
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | … | ||||
y | … | ﹣2 | m | 2 | 0 | n | 2 | … |
請直接寫出m,n的值;
(2)根據(jù)上表中的數(shù)據(jù),在平面直角坐標(biāo)系內(nèi)補全該函數(shù)的圖象;
(3)若函數(shù)y=x3﹣3x的圖象上有三個點A(x1,y1),B(x2,y2),C(x3,y3),且x1<﹣2<x2<2<x3,則y1,y2,y3之間的大小關(guān)系為 (用“<”連接);
(4)若方程x3﹣3x=k有三個不同的實數(shù)根.請根據(jù)函數(shù)圖象,直接寫出k的取值范圍.
【答案】(1)m=,n=﹣2;(2)見解析;(3)y1<y2<y3;(4)﹣2<k<2.
【解析】
(1)從函數(shù)的對稱性可得:m=,n=﹣2;
(2)描點如下函數(shù)圖象;
(3)從圖象看,確定x1、x2、x3,再圖象上的位置,即可求解;則y1,y2,y3之間的大小關(guān)系為:y1<y2<y3;
(4)方程x3﹣3x=k有三個不同的實數(shù)根,從圖象即可看出.
解:(1)從函數(shù)的對稱性可得:m=,n=﹣2;
(2)描點如下函數(shù)圖象
(3)從圖象看,x1<﹣2<x2<2<x3,則y1,y2,y3之間的大小關(guān)系為:y1<y2<y3,
故答案為:y1<y2<y3;
(4)從圖象看,方程x3﹣3x=k有三個不同的實數(shù)根,在x軸下方的臨界點是y=﹣2,同理x軸上方的臨界點是y=2,故:﹣2<k<2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為進一步發(fā)展基礎(chǔ)教育,自2014年以來,某縣加大了教育經(jīng)費的投入,2014年該縣投入教育經(jīng)費6000萬元。2016年投入教育經(jīng)費8640萬元。假設(shè)該縣這兩年投入教育經(jīng)費的年平均增長率相同。
(1)求這兩年該縣投入教育經(jīng)費的年平均增長率;
(2)若該縣教育經(jīng)費的投入還將保持相同的年平均增長率,請你預(yù)算2017年該縣投入教育經(jīng)費多少萬元。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校將舉辦“心懷感恩·孝敬父母”的活動,為此,校學(xué)生會就全校1 000名同學(xué)暑假期間平均每天做家務(wù)活的時間,隨機抽取部分同學(xué)進行調(diào)查,并繪制成如下條形統(tǒng)計圖.
(1)本次調(diào)查抽取的人數(shù)為_______,估計全校同學(xué)在暑假期間平均每天做家務(wù)活的時間在40分鐘以上(含40分鐘)的人數(shù)為_______;
(2)校學(xué)生會擬在表現(xiàn)突出的甲、乙、丙、丁四名同學(xué)中,隨機抽取兩名同學(xué)向全校匯報.請用樹狀圖或列表法表示出所有可能的結(jié)果,并求恰好抽到甲、乙兩名同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,BC=2,CD=1,以AD為直徑的半圓O與BC相切于點E,連接BD,則陰影部分的面積為( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某小組做“用頻率估計概率”的實驗時,統(tǒng)計了某一結(jié)果出現(xiàn)的頻率,繪制了如圖的折線統(tǒng)計圖,則符合這一結(jié)果的實驗最有可能的是( )
A.在“石頭、剪刀、布”的游戲中,小明隨機出的是“剪刀”
B.一副去掉大小王的普通撲克牌洗勻后,從中任抽一張牌的花色是紅桃
C.暗箱中有1個紅球和2個黃球,它們只有顏色上的區(qū)別,從中任取一球是黃球
D.擲一個質(zhì)地均勻的正六面體骰子,向上的面點數(shù)是4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知反比例函數(shù)y= 與一次函數(shù)y=x+b的圖形在第一象限相交于點A(1,﹣k+4).
(1)試確定這兩函數(shù)的表達(dá)式;
(2)求出這兩個函數(shù)圖象的另一個交點B的坐標(biāo),并求△AOB的面積;
(3)根據(jù)圖象直接寫出反比例函數(shù)值大于一次函數(shù)值的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB為⊙O的直徑,點C、D在⊙O上,CD=BD,E、F是線段AC、AB的延長線上的點,并且EF與⊙O相切于點D.
(1)求證:∠A=2∠BDF;
(2)若AC=3,AB=5,求CE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,AC為對角線,點E,F分別在AB,AD上,BE=DF,連接EF.
(1)求證:AC⊥EF;
(2)延長EF交CD的延長線于點G,連接BD交AC于點O,若BD=4,tanG=,求AO的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com