【題目】如圖,拋物線x軸交于A(3,0),B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)M(,5)是拋物線上一點(diǎn),拋物線與拋物線關(guān)于y軸對稱,點(diǎn)A、B、M關(guān)于y軸的對稱點(diǎn)分別為點(diǎn)A′、B′、M′

(1)求拋物線C1的解析式;

(2)過點(diǎn)M′M′Ex軸于點(diǎn)E,交直線A′C于點(diǎn)D,x軸上是否存在點(diǎn)P,使得以A′、D. P為頂點(diǎn)的三角形與AB′C相似?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

【答案】(1) (2)P(2,0)或(,0)

【解析】(1)、將點(diǎn)A和點(diǎn)M的坐標(biāo)代入,利用待定系數(shù)法求出函數(shù)解析式;(2)、根據(jù)函數(shù)解析式求出點(diǎn)B和點(diǎn)C的坐標(biāo),然后利用軸對稱性得出點(diǎn)M′、點(diǎn)A′和點(diǎn)B′的坐標(biāo),從而得出直線A′C的直線解析式,根據(jù)勾股定理分別求出ACDA′的長度,設(shè)P(m,0),分兩種情況分別求出m的值,得出點(diǎn)P的坐標(biāo).

(1)、把A(-3,0),M(,5)代入y=ax2+bx+4得:,

解得:, 所以拋物線C1的解析式為,

(2)、令y=0,則, 解得x1=-3,x2=1, ∴B(1,0),
令x=0,則y=4,∴C(0,4).由題意,知M′(,5),B′(-1,0),A′(3,0),∠CAA′=∠CA′A,∴AB′=2.設(shè)直線A′C的解析式為y=px+q.

把A′(3,0),C(0,4)代入得:,解得:,∴y=

當(dāng)x=時,y==2,∴D(,2) 由勾股定理得,AC=5, DA′=

設(shè)P(m,0). 當(dāng)m<3時,此時點(diǎn)P在點(diǎn)A′的左邊, ,即有△DA′P∽△CAB′,

, 解得m=2, ∴P(2,0);

,即有△DA′P∽△B′AC,∴, 解得m=,∴P(,0);

當(dāng)m>3時,此時點(diǎn)P在點(diǎn)A′的右邊,∵∠CB′O≠∠DA′E, ∴∠AB′C≠∠DA′P,

∴此情況,△DA′P與△B′AC不能相似.

綜上所述,存在點(diǎn)P(2,0)或(,0)滿足條件.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)PCD上,已知∠BAP+APD180°,∠1=∠2,請?zhí)顚?/span>AEPF的理由.

解:因為∠BAP+APD180°   ,

APC+APD180°   ,

所以∠BAP=∠APC   

又∠1=∠2   ,

所以∠BAP﹣∠1=∠APC﹣∠2   

即∠EAP=∠APF

所以AEPF   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小剛與小明在玩數(shù)字游戲,現(xiàn)有5張寫著不同數(shù)字的卡片(如圖),小剛請小明按要求抽出卡片,完成下列各問題:

(1)從中取出2張卡片,使這2張卡片上的數(shù)字乘積最大,如何抽取?最大值是多少?

(2)從中取出2張卡片,使這2張卡片上的數(shù)字相除的商最小,如何抽取?最小值是多少?

(3)從中取出4張卡片,用學(xué)過的運(yùn)算方法,使結(jié)果為24,如何抽取?寫出運(yùn)算式子(一種即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(12分)如圖,已知三角形ABC的邊AB⊙O的切線,切點(diǎn)為BAC經(jīng)過圓心O并與圓相交于點(diǎn)D、C,過C作直線CEAB,交AB的延長線于點(diǎn)E

1)求證:CB平分∠ACE;

2)若BE=3,CE=4,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,數(shù)陣是由50個偶數(shù)排成的.

1)在數(shù)陣中任意做一類似于圖中的框,設(shè)其中最小的數(shù)為x,那么其他3個數(shù)怎樣表示?

2)如果這四個數(shù)的和是172,能否求出這四個數(shù)?

3)如果擴(kuò)充數(shù)陣的數(shù)據(jù),框中的四個數(shù)的和可以是2019嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形中,點(diǎn)、分別是、、的中點(diǎn),交于,連接、.下列結(jié)論:①;②;③;④.正確的有(

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y1=-2x2+2,直線y2=2x+2,當(dāng)x任取一值時,x對應(yīng)的函數(shù)值分別為y1、y2.若y1≠y2,取y1、y2中的較小值記為M;若y1=y2,記M=y1=y2.例如:當(dāng)x=1時,y1=0,y2=4,y1<y2,此時M=0.

下列判斷:

①當(dāng)x>0時,y1>y2
當(dāng)x0時,x值越大,M值越;

使得M大于2x值不存在;
使得M=1x值是.其中正確的個數(shù)是( )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人想共同承包一項工程,甲單獨(dú)做30天完成,乙單獨(dú)做20天完成,合同規(guī)定15天完成,否則每超過1天罰款1 000元,甲、乙兩人經(jīng)商量后簽訂了該合同.

(1)正常情況下,甲、乙兩人能否履行該合同?為什么?

(2)現(xiàn)兩人合作了這項工程的75%,因別處有急事,必須調(diào)走1人,問調(diào)走誰更合適些?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場購進(jìn)一批單價為4元的日用品.若按每件5元的價格銷售,每月能賣出3萬件;若按每件6元的價格銷售,每月能賣出2萬件,假定每月銷售件數(shù)y(件)與價格x(元/件)之間滿足一次函數(shù)關(guān)系.

1)試求yx之間的函數(shù)關(guān)系式;

2)當(dāng)銷售價格定為多少時,才能使每月的利潤最大?每月的最大利潤是多少?

查看答案和解析>>

同步練習(xí)冊答案