【題目】動(dòng)手操作:(不要求寫作法和證明,只保留作圖痕跡)
(1)如圖所示,以點(diǎn)為對(duì)稱中心,畫出與成中心對(duì)稱的圖形.
(2)如圖所示,將繞點(diǎn)旋轉(zhuǎn)后,頂點(diǎn)旋轉(zhuǎn)到了處,試畫出旋轉(zhuǎn)后的.
【答案】(1)如圖所示,即為所求;見解析;(2)如圖所示,即為所求;見解析.
【解析】
(1)依據(jù)中心對(duì)稱的性質(zhì),分別連接AO并延長使A1O=AO,連接BO并延長使B1O=BO,連接CO并延長使C1O=CO,即可得到與△ABC成中心對(duì)稱的圖形△A1B1C1;
(2)依據(jù)旋轉(zhuǎn)的方向,旋轉(zhuǎn)角度以及旋轉(zhuǎn)中心,連接PM1,作∠NPN1=∠MPM1,再在射線PN1上截取PN=PN1即可得到旋轉(zhuǎn)后的△M1N1P.
解:(1)如圖所示,△A1B1C1即為所求:
(2)如圖所示,△M1N1P即為所求:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知:點(diǎn)A(0,0),B(,0),C(0,1)在△ABC內(nèi)依次作等邊三角形,使一邊在x軸上,另一個(gè)頂點(diǎn)在BC邊上,作出的等邊三角形分別是第1個(gè)△AA1B1,第2個(gè)△B1A2B2,第3個(gè)△B2A3B3,…,則第個(gè)等邊三角形的邊長等于__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們給出如下定義:有一組相鄰內(nèi)角相等的四邊形叫做等鄰角四邊形.請解答下列問題:
(1)寫出一個(gè)你所學(xué)過的特殊四邊形中是等鄰角四邊形的圖形的名稱;
(2)如圖1,在△ABC中,AB=AC,點(diǎn)D在BC上,且CD=CA,點(diǎn)E、F分別為BC、AD的中點(diǎn),連接EF并延長交AB于點(diǎn)G.求證:四邊形AGEC是等鄰角四邊形;
(3)如圖2,若點(diǎn)D在△ABC的內(nèi)部,(2)中的其他條件不變,EF與CD交于點(diǎn)H,圖中是否存在等鄰角四邊形,若存在,指出是哪個(gè)四邊形,并證明;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某學(xué)校有一邊長為20米的正方形區(qū)域(四周陰影是四個(gè)全等的矩形,記為區(qū)域甲;中心區(qū)是正方形,記為區(qū)域乙).區(qū)域甲建設(shè)成休閑區(qū),區(qū)域乙建成展示區(qū),已知甲、乙兩個(gè)區(qū)域的建設(shè)費(fèi)用如下表:
區(qū)域 | 甲 | 乙 |
價(jià)格(百元米2) | 6 | 5 |
設(shè)矩形的較短邊的長為米,正方形區(qū)域建設(shè)總費(fèi)用為百元.
(1)的長為 米(用含的代數(shù)式表示);
(2)求關(guān)于的函數(shù)解析式;
(3)當(dāng)中心區(qū)的邊長要求不低于8米且不超過12米時(shí),預(yù)備建設(shè)資金220000元夠用嗎?請利用函數(shù)的增減性來說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某小組做“用頻率估計(jì)概率”的實(shí)驗(yàn)時(shí),繪出的某一結(jié)果出現(xiàn)的頻率折線圖,則符合這一結(jié)果的實(shí)驗(yàn)可能是( 。
A. 拋一枚硬幣,出現(xiàn)正面朝上
B. 擲一個(gè)正六面體的骰子,出現(xiàn)3點(diǎn)朝上
C. 一副去掉大小王的撲克牌洗勻后,從中任抽一張牌的花色是紅桃
D. 從一個(gè)裝有2個(gè)紅球1個(gè)黑球的袋子中任取一球,取到的是黑球
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是等邊三角形ABC內(nèi)的一點(diǎn),且PA=3,PB=4,PC=5,將△ABP繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°到△CBQ位置.連接PQ,則以下結(jié)論錯(cuò)誤的是( )
A. ∠QPB=60° B. ∠PQC=90° C. ∠APB=150° D. ∠APC=135°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一元二次方程x2+2x﹣3=0的二根x1,x2(x1<x2)是拋物線y=ax2+bx+c與x軸的兩個(gè)交點(diǎn)B,C的橫坐標(biāo),且此拋物線過點(diǎn)A(3,6).
(1)求此二次函數(shù)的解析式;
(2)寫出不等式ax2+bx+c≥0的解集;
(3)設(shè)此拋物線的頂點(diǎn)為P,對(duì)稱軸與線段AC相交于點(diǎn)Q,求點(diǎn)P和點(diǎn)Q的坐標(biāo);
(4)在x軸上有一動(dòng)點(diǎn)M,當(dāng)MQ+MA取得最小值時(shí),求M點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)設(shè)計(jì)了一款工藝品,每件成本40元,出于營銷考慮,要求每件售價(jià)不得低于40元,但物價(jià)部門要求每件售價(jià)不得高于60元.據(jù)市場調(diào)查,銷售單價(jià)是50元時(shí),每天的銷售量是100件,而銷售單價(jià)每漲1元,每天就少售出2件,設(shè)單價(jià)上漲元.
(1)求當(dāng)為多少時(shí)每天的利潤是1350元?
(2)設(shè)每天的銷售利潤為,求銷售單價(jià)為多少元時(shí),每天利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=﹣x2+2x+8與x軸交于B、C兩點(diǎn),點(diǎn)D平分BC,且點(diǎn)A為拋物線上的點(diǎn),且∠BAC為銳角,則AD的值范圍為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com