【題目】已知:如圖在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,點(diǎn)C,D,E三點(diǎn)在同一條直線上,連接BD,BE.以下四個(gè)結(jié)論:
①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2(AD2+AB2),
其中結(jié)論正確的個(gè)數(shù)是
A.1 B.2 C.3 D.4
【答案】C
【解析】
試題①∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE。
∵在△BAD和△CAE中,AB=AC,∠BAD=∠CAE,AD=AE,
∴△BAD≌△CAE(SAS)。∴BD=CE。本結(jié)論正確。
②∵△BAD≌△CAE,∴∠ABD=∠ACE。
∵∠ABD+∠DBC=45°,∴∠ACE+∠DBC=45°。∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°。
∴BD⊥CE。本結(jié)論正確。
③∵△ABC為等腰直角三角形,∴∠ABC=∠ACB=45°。∴∠ABD+∠DBC=45°。
∵∠ABD=∠ACE,∴∠ACE+∠DBC=45°。本結(jié)論正確。
④∵BD⊥CE,∴在Rt△BDE中,利用勾股定理得:BE2=BD2+DE2。
∵△ADE為等腰直角三角形,∴DE=AD,即DE2=2AD2。
∴BE2=BD2+DE2=BD2+2AD2。
而B(niǎo)D2≠2AB2,本結(jié)論錯(cuò)誤。
綜上所述,正確的個(gè)數(shù)為3個(gè)。故選C。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,點(diǎn)A為半圓O直徑MN所在直線上一點(diǎn),射線AB垂直于MN,垂足為A,半圓繞M點(diǎn)順時(shí)針轉(zhuǎn)動(dòng),轉(zhuǎn)過(guò)的角度記作a;設(shè)半圓O的半徑為R,AM的長(zhǎng)度為m,回答下列問(wèn)題:
(1)探究:若R=2,m=1,如圖1,當(dāng)旋轉(zhuǎn)30°時(shí),圓心O′到射線AB的距離是;如圖2,當(dāng)a=°時(shí),半圓O與射線AB相切;
(2)如圖3,在(1)的條件下,為了使得半圓O轉(zhuǎn)動(dòng)30°即能與射線AB相切,在保持線段AM長(zhǎng)度不變的條件下,調(diào)整半徑R的大小,請(qǐng)你求出滿足要求的R,并說(shuō)明理由.
(3)發(fā)現(xiàn):如圖4,在0°<α<90°時(shí),為了對(duì)任意旋轉(zhuǎn)角都保證半圓O與射線AB能夠相切,小明探究了cosα與R、m兩個(gè)量的關(guān)系,請(qǐng)你幫助他直接寫出這個(gè)關(guān)系;cosα=(用含有R、m的代數(shù)式表示)
(4)拓展:如圖5,若R=m,當(dāng)半圓弧線與射線AB有兩個(gè)交點(diǎn)時(shí),α的取值范圍是 , 并求出在這個(gè)變化過(guò)程中陰影部分(弓形)面積的最大值(用m表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB是⊙O的直徑,經(jīng)過(guò)點(diǎn)A作AE⊥OC,垂足為點(diǎn)D,AE與BC交于點(diǎn)F,與過(guò)點(diǎn)B的直線交于點(diǎn)E,且EB=EF.
(1)求證:BE是⊙O的切線;
(2)若CD=1,cos∠AEB= ,求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,E是AB上一點(diǎn),BE=2,AE=3,P是AC上一動(dòng)點(diǎn),則PB+PE的最小值是( ).
A. 5 B. 5 C. 6 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】由若干個(gè)(大于個(gè))大小相同的正方體組成一個(gè)幾何體的從正面看和從上面看如圖所示,則這個(gè)幾何體的從左面看不可能是下列圖中的( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,數(shù)軸上點(diǎn)A表示的數(shù)為﹣2,點(diǎn)B表示的數(shù)為8,點(diǎn)P從點(diǎn)A出發(fā),以每秒3個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)B出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度向左勻速運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒(t>0).
(1)填空:
①A、B兩點(diǎn)間的距離AB= ,線段AB的中點(diǎn)表示的數(shù)為 ;
②用含t的代數(shù)式表示:t秒后,點(diǎn)P表示的數(shù)為 ;點(diǎn)Q表示的數(shù)為 .
(2)求當(dāng)t為何值時(shí),PQ=AB;
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)B的右側(cè)時(shí),PA的中點(diǎn)為M,N為PB的三等分點(diǎn)且靠近于P點(diǎn),求PM﹣BN的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)某班學(xué)生的一次數(shù)學(xué)成績(jī)進(jìn)行統(tǒng)計(jì),各分?jǐn)?shù)段的人數(shù)如圖所示,根據(jù)圖示信息填空:
(1)該班有學(xué)生________人;
(2)成績(jī)?cè)?/span>69.5~79.5之間的人數(shù)為________人;
(3)79.5分以上的為優(yōu)秀,該班的優(yōu)秀率是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,射線BC∥射線OA,∠C=∠BAO=100°,試回答下列問(wèn)題:
(1)如圖①,求證:OC∥AB;
(2)若點(diǎn)E、F在線段BC上,且滿足∠EOB=∠AOB,并且OF平分∠BOC,
①如圖②,若∠AOB=30°,則∠EOF的度數(shù)等于多少(直接寫出答案即可);
②若平行移動(dòng)AB,當(dāng)∠BOC=6∠EOF時(shí),求∠ABO.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AB與CD相交于點(diǎn)O, .
(1)如果,那么根據(jù)___________,可得=__________度.
(2)如果,求的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com