【題目】已知直線l1∥l2∥l3 , 等腰直角△ABC的三個頂點A,B,C分別在l1 , l2 , l3上,若∠ACB=90°,l1 , l2的距離為1,l2 , l3的距離為3,求:
(1)線段AB的長;
(2) 的值.
【答案】
(1)解:
過A作AN⊥直線l3于N,過B作BM⊥l3于M,
則∠BMC=∠ANC=∠BCA=90°,
∴∠BCM+∠MBC=90°,∠BCM+∠ACN=90°,
∴∠MBC=∠ACN,
在△BMC和△CNA中
∴△BMC≌△CNA,
∴BM=CN,AN=CM,
∵l1,l2的距離為1,l2,l3的距離為3,
∴BM=CN=3,CM=AN=1+3=4,
在Rt△BMC中,由勾股定理得:BC=AC= =5,
在Rt△ACB中,由勾股定理得:AB= =5
(2)解:∵直線l2∥直線l3,
∴∠DBC=∠BCM,
∵∠BCD=∠BMC=90°,
∴△BCD∽△CMB,
∴ = ,
∴ = ,
∴BD= ,
∵AB=5 ,
∴ = =
【解析】(1)過A作AN⊥直線l3于N,過B作BM⊥l3于M,根據(jù)全等三角形的判定得出△BMC≌△CNA,根據(jù)全等得出BM=CN,AN=CM,求出BM和CM,根據(jù)勾股定理求出BC、AC,再求出AB即可;(2)根據(jù)平行線性質得出∠DBC=∠BCM,根據(jù)相似三角形的判定得出△BCD∽△CMB,得出比例式,求出BD,即可求出答案.
【考點精析】本題主要考查了等腰直角三角形和相似三角形的判定與性質的相關知識點,需要掌握等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個底角相等且等于45°;相似三角形的一切對應線段(對應高、對應中線、對應角平分線、外接圓半徑、內切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方才能正確解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】下列敘述中正確的是( )
A.若a,b,c∈R,則“ax2+bx+c≥0”的充分條件是“b2﹣4ac≤0”
B.若a,b,c∈R,則“ab2>cb2”的充要條件是“a>c”
C.命題“對任意x∈R,有x2≥0”的否定是“存在x∈R,有x2≥0”
D.l是一條直線,α,β是兩個不同的平面,若l⊥α,l⊥β,則α∥β
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知平行四邊形ABCD的三個頂點坐標分別是A(m,n),B(2,﹣1),C(﹣m,﹣n),則關于點D的說法正確的是( )
甲:點D在第一象限
乙:點D與點A關于原點對稱
丙:點D的坐標是(﹣2,1)
丁:點D與原點距離是 .
A.甲乙
B.丙丁
C.甲丁
D.乙丙
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在元旦來臨之際,騰飛中學舉行了隆重的慶;顒,在校圖書館展開了書法、國學誦讀、演講、征文四個比賽項目(每人只參加一個項目),“希望班”全班同學都參加了比賽,為了解這個班同學參加各項比賽的情況,收集整理數(shù)據(jù)后,繪制以下不完整的折線統(tǒng)計圖(圖1)和扇形統(tǒng)計圖(圖2),根據(jù)圖表中的信息解答下列各題:
(1)請求出“希望班”全班人數(shù);
(2)請把折線統(tǒng)計圖補充完整;
(3)歡歡和樂樂參加了比賽,請用“列表法”或“畫樹狀圖法”求出他們參加的比賽項目相同的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+2x經過原點O,且與直線y=x﹣2交于B,C兩點.
(1)求拋物線的頂點A的坐標及點B,C的坐標;
(2)求證:∠ABC=90°;
(3)在直線BC上方的拋物線上是否存在點P,使△PBC的面積最大?若存在,請求出點P的坐標;若不存在,請說明理由;
(4)若點N為x軸上的一個動點,過點N作MN⊥x軸與拋物線交于點M,則是否存在以O,M,N為頂點的三角形與△ABC相似?若存在,請求出點N的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在一張矩形紙片ABCD中,AB=4,BC=8,點E,F(xiàn)分別在AD,BC上,將紙片ABCD沿直線EF折疊,點C落在AD上的一點H處,點D落在點G處,有以下四個結論:
①四邊形CFHE是菱形;
②EC平分∠DCH;
③線段BF的取值范圍為3≤BF≤4;
④當點H與點A重合時,EF=2 .
以上結論中,你認為正確的有 . (填序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,10個邊長為1的正方形如圖擺放在平面直角坐標系中,經過原點的一條直線l將這10個正方形分成面積相等的兩部分,則該直線l的解析式為 .
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com