【題目】對(duì)于一個(gè)圖形,通過兩種不同的方法計(jì)算它的面積,可以得到一個(gè)數(shù)學(xué)等式,例如圖1,可以得到這個(gè)等式,請(qǐng)解答下列問題:

1)寫出圖2中所表示的數(shù)學(xué)等式

2)根據(jù)整式乘法的運(yùn)算法則,通過計(jì)算驗(yàn)證上述等式.

3)利用(1)中得到的結(jié)論,解決下面的問題:

,則

4)小明同學(xué)用圖3張邊長為的正方形,張邊長為的正方形,張長寬分別為、的長方形紙片拼出一個(gè)面積為的長方形,則

【答案】(1) (2)證明見解析;(3) 30; (4) 7.

【解析】

(1)依據(jù)正方形的面積= ;正方形的面積=,可得等式;

(2)運(yùn)用多項(xiàng)式乘多項(xiàng)式進(jìn)行計(jì)算即可;

(3)依據(jù) 進(jìn)行計(jì)算即可;

(4)依據(jù)所拼圖形的面積為: , ,即可得到x, y, z的值,即可求解.

: (1) 正方形的面積= ;大正方形的面積=

故答案為:

(2)證明: (a+b+c) (a+b+c) ,

= ,

= .

(3)

= ,

= ,

=30.

故答案為: 30;

(4)由題可知,所拼圖形的面積為: ,

(2a+b) (a+4b)

=

=

x=2,y=4, z=9.

x+y+z=2+4+9=17.

故答案為: 17.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線 y=﹣x2+bx+c x 軸交于 A、B 兩點(diǎn),與 y 軸交于點(diǎn) C ,點(diǎn) A 的坐標(biāo)為(-1,0),點(diǎn) C 的坐標(biāo)為(0,3),點(diǎn)D和點(diǎn) C 關(guān)于拋物線的對(duì)稱軸對(duì)稱,直線 AD y 軸交于點(diǎn) E

1)求拋物線的解析式;

2)如圖,直線 AD 上方的拋物線上有一點(diǎn) F,過點(diǎn) F FGAD 于點(diǎn) G,作 FH 平行于 x 軸交直線 AD 于點(diǎn) H,求FGH 周長的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,tanABC,BD為對(duì)角線,∠ABD+BDC90°,過點(diǎn)AAEBD于點(diǎn)E,連接CE,若AEDE,ECDC5,則△ABC的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線yax2過定點(diǎn)M,),與直線ABykx+1相交于A、B兩點(diǎn).

1)若k=﹣,求△ABO的面積.

2)若k=﹣,在拋物線上的點(diǎn)P,使得△ABP的面積是△ABO面積的兩倍,求P點(diǎn)坐標(biāo).

3)將拋物線向右平移兩個(gè)單位,再向下平移兩個(gè)單位,得到拋物線C2,如題圖2,直線ykx2k+)與拋物線C2的對(duì)稱軸交點(diǎn)為G,與拋物線C2的交點(diǎn)為P、Q兩點(diǎn)(點(diǎn)P在點(diǎn)Q的左側(cè)),試探究是否為定值,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB半圓O的直徑,點(diǎn)C在半圓O上,過點(diǎn)OBC的平行線交AC于點(diǎn)E,交過點(diǎn)A的直線于點(diǎn)D,且D=BAC.

1求證:AD是半圓O的切線;

2若BC=2,CE=,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊ABC中,D,E,F(xiàn)分別是BC,AC,AB上的點(diǎn),DEAC,EFAB,

FDBC,則DEF的面積與ABC的面積之比等于( )

A13 B23 C2 D3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,山坡上有一棵與水平面垂直的大樹,一場臺(tái)風(fēng)過后,大樹被刮傾斜后折斷倒在山坡上,樹的頂部恰好接觸到坡面.已知山坡的坡角∠AEF=23°,量得樹干傾斜角∠BAC=38°,大樹被折斷部分和坡面所成的角∠ADC=60°,AD=4m.求這棵大樹沒有折斷前的高度.(結(jié)果精確到個(gè)位,參考數(shù)據(jù):=14=17,=24)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=x22+m的圖象與y軸交于點(diǎn)C,點(diǎn)B是點(diǎn)C關(guān)于該二次函數(shù)圖象的對(duì)稱軸對(duì)稱的點(diǎn).已知一次函數(shù)y=kx+b的圖象經(jīng)過該二次函數(shù)圖象上點(diǎn)A10)及點(diǎn)B

1)求二次函數(shù)與一次函數(shù)的解析式;

2)根據(jù)圖象,寫出滿足kx+b≥x22+mx的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在梯形ABCD中,點(diǎn)E,F分別在邊ABCD上,ADEFBC,EFBD交于點(diǎn)G,AD5,BC10

1)求EF的長;

2)設(shè),,那么   ,   .(用向量、表示)

查看答案和解析>>

同步練習(xí)冊答案