【題目】如圖,AB半圓O的直徑,點(diǎn)C在半圓O上,過(guò)點(diǎn)OBC的平行線交AC于點(diǎn)E,交過(guò)點(diǎn)A的直線于點(diǎn)D,且D=BAC.

1求證:AD是半圓O的切線;

2若BC=2,CE=,求AD的長(zhǎng).

【答案】

1見(jiàn)解析。

2

【解析】(1)證明:AB為半圓O的直徑,∴∠BCA=90°

BCOD,OEAC.

∴∠D+DAE=90°

∵∠D=BAC,

∴∠BAC+DAE=90°

OAOD

AD是半圓O的切線.

(2)解:BCOD,∴△AOE∽△ABC,

,

BA=2AO,CE=,AC=2CE=2

在RtABC中, AB=

∵∠D=BAC,ACB=DAO=90°,

∴△DOA∽△ABC.

AD=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC是等邊三角形,以AB為直徑作⊙O,交BC邊于點(diǎn)D,交AC邊于點(diǎn)F,作DE⊥AC于點(diǎn)E

1)求證:DE⊙O的切線;

2)若△ABC的邊長(zhǎng)為4,求EF的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y=x+4的圖象與反比例函數(shù)y=(k為常數(shù)且k0)的圖象交于A(﹣1,a),B兩點(diǎn),與x軸交于點(diǎn)C.

(1)求此反比例函數(shù)的表達(dá)式;

(2)若點(diǎn)P在x軸上,且SACP=SBOC,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖在ABC中,∠ACB90°,ACBCE為外角∠BCD平分線上一動(dòng)點(diǎn)(不與點(diǎn)C重合),點(diǎn)E關(guān)于直線BC的對(duì)稱點(diǎn)為F,連接BE,連接AF并延長(zhǎng)交直線BE于點(diǎn)G

1)求證:AFBE;

2)用等式表示線段FGEGCE的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ABC=90°AB=BC.點(diǎn)D是線段AB上的一點(diǎn),連結(jié)CD.過(guò)點(diǎn)BBGCD,分別交CD、CA于點(diǎn)E、F,與過(guò)點(diǎn)A且垂直于AB的直線相交于點(diǎn)G,連結(jié)DF,給出以下四個(gè)結(jié)論:①;②若點(diǎn)DAB的中點(diǎn),則AFAB;③當(dāng)B、CF、D四點(diǎn)在同一個(gè)圓上時(shí),DF=DB;④若,則SABC9SBDF,其中正確的結(jié)論序號(hào)是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于一個(gè)圖形,通過(guò)兩種不同的方法計(jì)算它的面積,可以得到一個(gè)數(shù)學(xué)等式,例如圖1,可以得到這個(gè)等式,請(qǐng)解答下列問(wèn)題:

1)寫出圖2中所表示的數(shù)學(xué)等式

2)根據(jù)整式乘法的運(yùn)算法則,通過(guò)計(jì)算驗(yàn)證上述等式.

3)利用(1)中得到的結(jié)論,解決下面的問(wèn)題:

,,則

4)小明同學(xué)用圖3張邊長(zhǎng)為的正方形,張邊長(zhǎng)為的正方形,張長(zhǎng)寬分別為、的長(zhǎng)方形紙片拼出一個(gè)面積為的長(zhǎng)方形,則

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣3x+3x軸、y軸分別交于A、B兩點(diǎn),以AB為邊在第一象限作正方形ABCD,點(diǎn)D在雙曲線k≠0)上.將正方形沿x軸負(fù)方向平移a個(gè)單位長(zhǎng)度后,點(diǎn)C恰好落在該雙曲線上,則a的值是

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知直線y=3x分別與雙曲線y=、y=x>0)交于P、Q兩點(diǎn),且OP=2OQ

(1)求k的值.

(2)如圖2,若點(diǎn)A是雙曲線y= 上的動(dòng)點(diǎn),ABx軸,ACy軸,分別交雙曲線y=x>0)于點(diǎn)B、C,連接BC.請(qǐng)你探索在點(diǎn)A運(yùn)動(dòng)過(guò)程中,△ABC的面積是否變化?若不變,請(qǐng)求出△ABC的面積;若改變,請(qǐng)說(shuō)明理由;

(3)如圖3,若點(diǎn)D是直線y=3x上的一點(diǎn),請(qǐng)你進(jìn)一步探索在點(diǎn)A運(yùn)動(dòng)過(guò)程中,以點(diǎn)A、B、C、D為頂點(diǎn)的四邊形能否為平行四邊形?若能,求出此時(shí)點(diǎn)A的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:正方形ABCD,∠EAF45°

1)如圖,當(dāng)點(diǎn)E、F分別在邊BCCD上,連接EF,求證:EFBE+DF;

童威同學(xué)是這樣思考的,請(qǐng)你和他一起完成如下解答:證明:將ADF繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,得ABG,所以ADF≌△ABG

2)如圖,點(diǎn)M、N分別在邊AB、CD上,且BNDM.當(dāng)點(diǎn)E、F分別在BMDN上,連接EF,探究三條線段EF、BE、DF之間滿足的數(shù)量關(guān)系,并證明你的結(jié)論.

3)如圖,當(dāng)點(diǎn)E、F分別在對(duì)角線BD、邊CD上.若FC2,則BE的長(zhǎng)為   

查看答案和解析>>

同步練習(xí)冊(cè)答案