【題目】如圖,數(shù)軸上A、B兩點(diǎn)分別對應(yīng)有理數(shù)a、b,A、B兩點(diǎn)之間的距離表示為AB,在數(shù)軸上A、B兩點(diǎn)之間的距離AB=|a﹣b|,利用數(shù)形結(jié)合思想回答下列問題:
(1)數(shù)軸上表示2和10兩點(diǎn)之間的距離是 ,數(shù)軸上表示2和﹣10兩點(diǎn)之間的距離是 ;
(2)數(shù)軸上,x和﹣2兩點(diǎn)之間的距離是 ;
(3)若x表示一個有理數(shù),則|x﹣1|+|x+2|有最小值嗎?若有,請求出最小值,若沒有,寫出理由.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=﹣x2﹣x+4.
(1)用配方法確定它的頂點(diǎn)坐標(biāo)和對稱軸;
(2)x取何值時,y隨x的增大而減?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分8分)如圖,四邊形ABCD中,,E是邊CD的中點(diǎn),連接BE并延長與AD的延長線相較于點(diǎn)F.
(1)求證:四邊形BDFC是平行四邊形;
(2)若△BCD是等腰三角形,求四邊形BDFC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀并探究下列問題:
(1)如圖1,將長方形紙片剪兩刀,其中AB∥CD,則∠2與∠1、∠3有何關(guān)系?為什么?
(2)如圖2,將長方形紙片剪四刀,其中AB∥CD,則∠2+∠4與∠1+∠3+∠5有何關(guān)系?為什么?
(3)如圖3,將長方形紙片剪n刀,其中AB∥CD,你又有何發(fā)現(xiàn)?
(4)如圖4,直線AB∥CD,∠EFA=30°,∠FGH=90°,∠HMN=30°,∠CNP=50°,則∠GHM= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一蓄水池有水40m3,按一定的速度放水,水池里的水量y(m3)與放水時間t(分)有如下關(guān)系:
放水時間(分) | 1 | 2 | 3 | 4 | … |
水池中水量(m3) | 38 | 36 | 34 | 32 | … |
下列結(jié)論中正確的是( 。
A. y隨t的增加而增大
B. 放水時間為15分鐘時,水池中水量為8m3
C. 每分鐘的放水量是2m3
D. y與t之間的關(guān)系式為y=40t
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校開展以感恩教育為主題的藝術(shù)活動,舉辦了四個項(xiàng)目的比賽,它們分別是演講、唱歌、書法、繪畫。要求每位同學(xué)必須參加,且限報一項(xiàng)活動。以九年級(1)班為樣本進(jìn)行統(tǒng)計,并將統(tǒng)計結(jié)果繪成如圖1、圖2所示的兩幅統(tǒng)計圖。請你結(jié)合圖示所給出的信息解答下列問題。
(1)求出參加繪畫比賽的學(xué)生人數(shù)占全班總?cè)藬?shù)的百分比?
(2)求出扇形統(tǒng)計圖中參加書法比賽的學(xué)生所在扇形圓心角的度數(shù)?
(3)若該校九年級學(xué)生有600人,請你估計這次藝術(shù)活動中,參加演講和唱歌的學(xué)生各有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,拋物線( a≠0)經(jīng)過原點(diǎn),頂點(diǎn)為A(h,k)(h≠0).
(1)當(dāng)h=1,k=2時,求拋物線的解析式;
(2)若拋物線(t≠0)也經(jīng)過A點(diǎn),求a與t之間的關(guān)系式;
(3)當(dāng)點(diǎn)A在拋物線上,且-2≤h<1時,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)C的坐標(biāo)為(0,4),動點(diǎn)A以每秒1個單位長的速度,從點(diǎn)O出發(fā)沿x軸的正方向運(yùn)動,M是線段AC的中點(diǎn).將線段AM以點(diǎn)A為中心,沿順時針方向旋轉(zhuǎn)90°,得到線段AB.過點(diǎn)B作x軸的垂線,垂足為E,過點(diǎn)C作y軸的垂線,交直線BE于點(diǎn)D.運(yùn)動時間為t秒.
(1)當(dāng)點(diǎn)B與點(diǎn)D重合時,求t的值;
(2)設(shè)△BCD的面積為S,當(dāng)t為何值時,S=?
(3)連接MB,當(dāng)MB∥OA時,如果拋物線y=ax2﹣10ax的頂點(diǎn)在△ABM內(nèi)部(不包括邊),求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,四邊形ABCD四條邊上的中點(diǎn)分別為E、F、G、H,順次連接EF、FG、GH、HE,得到四邊形EFGH(即四邊形ABCD的中點(diǎn)四邊形).
(1)四邊形EFGH的形狀是_______,證明你的結(jié)論.
(2)連接四邊形ABCD的對角線AC與BD,當(dāng)AC與BD滿足____條件時,四邊形EFGH是矩形;(只需要寫結(jié)論,不需證明)
(3)連接四邊形ABCD的對角線AC與BD,當(dāng)AC與BD滿足______條件時,四邊形EFGH是菱形.(只需要寫結(jié)論,不需證明)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com