【題目】如圖,將邊長為2cm的正方形ABCD沿其對(duì)角線AC剪開,再把△ABC沿著AD方向平移,得到△A′B′C′,若兩個(gè)三角形重疊部分的面積為0.5cm2,則它移動(dòng)的距離AA′等于( 。
A.cmB.cmC.cm或cmD. cm
【答案】D
【解析】
根據(jù)平移的性質(zhì),結(jié)合陰影部分是平行四邊形,△AA′H與△HCB′都是等腰直角三角形,則若設(shè)AA′=x,則陰影部分的底長為x,高A′D=2﹣x,根據(jù)平行四邊形的面積公式即可列出方程求解.
解:設(shè)AC交A′B′于H,A'C'交CD于點(diǎn)G,
由平移的性質(zhì)知AC∥A'C',A'B'∥CD,
∴四邊形A'HCG是平行四邊形,
∵∠A=45°,∠D=90°,
∴△A′HA是等腰直角三角形,
同理,△HCB′也是等腰直角三角形,
設(shè)AA′=x,則陰影部分的底長為x,高A′D=2﹣x,
∴x(2﹣x)=,
∴x=(cm).
即AA′=(cm).
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次數(shù)學(xué)活動(dòng)課上,老師帶領(lǐng)同學(xué)們?nèi)y量一座古塔CD的高度.他們首先從A處安置測傾器,測得塔頂C的仰角∠CFE=21°,然后往塔的方向前進(jìn)50米到達(dá)B處,此時(shí)測得仰角∠CGE=37°,已知測傾器高1.5米,請你根據(jù)以上數(shù)據(jù)計(jì)算出古塔CD的高度.
(參考數(shù)據(jù):sin37° ,tan37° ,sin21°≈,tan21°≈ )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以BC為直徑的⊙O交AB于點(diǎn)D,切線DE交AC于點(diǎn)E.
(1)求證:∠A=∠ADE;
(2)若AD=16,DE=10,求BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市銷售一種商品,成本是每千克30元,規(guī)定每千克售價(jià)不低于成本,且不高于90元.經(jīng)市場調(diào)查,每天的銷售量y(千克)與每千克售價(jià)x(元)滿足一次函數(shù)關(guān)系,當(dāng)售價(jià)每千克50元時(shí),銷售量y為80千克;當(dāng)售價(jià)每千克60元時(shí),銷售量y為60千克;
(1)求y與x之間的函數(shù)表達(dá)式;
(2)設(shè)商品每天的總利潤為W(元),求W與x之間的函數(shù)表達(dá)式(利潤=收入﹣成本),并指出售價(jià)為多少元時(shí)獲得最大利潤,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,線段AB是圓O的直徑,弦CD⊥AB于點(diǎn)H,點(diǎn)M是弧CBD上任意一點(diǎn),AH=4,CD=16.
(1)求圓O的半徑r的長度;
(2)求tan∠CMD;
(3)如圖2,直徑BM交直線CD于點(diǎn)E,直線MH交圓O于點(diǎn)N,連接BN交CE于點(diǎn)F,求HEHF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AD既是△ABC的中線,又是角平分線,請判斷:
(1)△ABC的形狀;
(2)AD是否過△ABC外接圓的圓心O,⊙O是否是△ABC的外接圓,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2﹣(m+1)x+(m2+1)=0有兩個(gè)相等的實(shí)數(shù)根.
(1)求m的值;
(2)將y=﹣x2+(m+1)x﹣(m2+1)的圖象向左平移3個(gè)單位長度,再向上平移2個(gè)單位長度,寫出變化后函數(shù)的表達(dá)式;
(3)在(2)的條件下,當(dāng)直線y=2x+n與變化后的圖象有公共點(diǎn)時(shí),求n2﹣4n的最小值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象與x軸交于A、B兩點(diǎn),B點(diǎn)的坐標(biāo)為(3,0),與y軸交于點(diǎn)C(0,-3),點(diǎn)P是直線BC下方拋物線上的一個(gè)動(dòng)點(diǎn).
(1)求二次函數(shù)解析式;
(2)連接PO,PC,并將△POC沿y軸對(duì)折,得到四邊形.是否存在點(diǎn)P,使四邊形為菱形?若存在,求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請說明理由;
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形ABPC的面積最大?求出此時(shí)P點(diǎn)的坐標(biāo)和四邊形ABPC的最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)戶的糧食產(chǎn)量平均每年的增長率為,第一年的產(chǎn)量為50000Kg,第二年的產(chǎn)量為_______Kg,第三年的產(chǎn)量為______Kg,三年總產(chǎn)量為________Kg.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com