【題目】如圖,拋物線y=ax2+bx+3與x軸交于A(﹣3,0),B(l,0)兩點,與y軸交于點C.
(1)求拋物線的解析式;
(2)點P是拋物線上的動點,且滿足S△PAO=2S△PCO,求出P點的坐標(biāo);
(3)連接BC,點E是x軸一動點,點F是拋物線上一動點,若以B、C、E、F為頂點的四邊形是平行四邊形時,請直接寫出點F的坐標(biāo).
【答案】(1)y=﹣x2﹣2x+3;(2)點P(,﹣2)或(﹣,2)或(﹣2+,﹣4+2)或(﹣2﹣,﹣4﹣2);(3)點F坐標(biāo)(﹣2,3)或(﹣1+,﹣3)或(﹣1﹣,﹣3)
【解析】
(1)由待定系數(shù)法可求解析式;
(2)求出點C坐標(biāo),可得OA=OC=3,由面積關(guān)系列出方程可求解;
(3)分兩種情況討論,利用平行四邊形的性質(zhì)可求解.
解:(1)∵拋物線y=ax2+bx+3與x軸交于A(﹣3,0),B(l,0)兩點,
∴,
解得:,
∴拋物線的解析式為:y=﹣x2﹣2x+3;
(2)∵拋物線y=﹣x2﹣2x+3與y軸交于點C,
∴點C(0,3)
∴OA=OC=3,
設(shè)點P(x,﹣x2﹣2x+3)
∵S△PAO=2S△PCO,
∴×3×|﹣x2﹣2x+3|=2××3×|x|,
∴x=±或x=﹣2±,
∴點P(,﹣2)或(﹣,2)或(﹣2+,﹣4+2)或(﹣2﹣,﹣4﹣2);
(3)若BC為邊,且四邊形BCFE是平行四邊形,
∴CF∥BE,
∴點F與點C縱坐標(biāo)相等,
∴3=﹣x2﹣2x+3,
∴x1=﹣2,x2=0,
∴點F(﹣2,3)
若BC為邊,且四邊形BCEF是平行四邊形,
∴BE與CF互相平分,
∵BE中點縱坐標(biāo)為0,且點C縱坐標(biāo)為3,
∴點F的縱坐標(biāo)為﹣3,
∴﹣3=﹣x2﹣2x+3
∴x=﹣1±,
∴點F(﹣1+,﹣3)或(﹣1﹣,﹣3);
若BC為對角線,則四邊形BECF是平行四邊形,
∴BC與EF互相平分,
∵BC中點縱坐標(biāo)為,且點E的縱坐標(biāo)為0,
∴點F的縱坐標(biāo)為3,
∴點F(﹣2,3),
綜上所述,點F坐標(biāo)(﹣2,3)或(﹣1+,﹣3)或(﹣1﹣,﹣3).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與實踐
問題情境
在綜合與實踐課上,同學(xué)們以“三角形的折疊”為主題開展數(shù)學(xué)活動.
操作發(fā)現(xiàn)
“楊輝”小組的同學(xué)用一張鈍角三角形紙片,為鈍角,進行了如下操作:
第一步:如圖1,折出的角平分線;
第二步:如圖2,展平紙片,再次折疊該三角形紙片,使預(yù)點與點重合,拆痕分別與,交于點,;
第三步:如圖3,再次展平紙片,連接,,可得四邊形.
(1)在圖4的中利用尺規(guī)作出折痕,;
(要求:保留作圖痕跡,不寫作法)
實踐探究
(2)試判斷圖3中四邊形的形狀,并寫出證明過程;
深入探究
(3)“陳景潤”小組的同學(xué)突發(fā)奇想,在“楊輝”小組同學(xué)操作的基礎(chǔ)上設(shè)計了這樣一個問題:在圖3中,連接,分別交于點,交于點,若,,利用相似三角形的知識可以求出的長.請你寫出求解過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義一種對正整數(shù)n的“F”運算:①當(dāng)n為奇數(shù)時,F(n)=3n+1;②當(dāng)n為偶數(shù)時,F(n)=(其中k是使F(n)為奇數(shù)的正整數(shù))……,兩種運算交替重復(fù)進行,例如,取n=24,則:
若n=24,則第2019次“F”運算的結(jié)果是( )
A.4B.1C.2018D.42018
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,,,,為半圓的直徑,將沿射線方向平移得到△A1B1C1.當(dāng)與半圓相切于點時,平移的距離的長為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,矩形ABCD中,AB=5,BC=8,點P為BC上一動點(不與端點重合),連接AP,將△ABP沿著AP折疊.點B落到M處,連接BM、CM,若△BMC為等腰三角形,則BP的長度為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為落實疫情期間的垃圾分類,樹立全面環(huán)保意識,某校舉行了“垃圾分類,綠色環(huán)!敝R競賽活動,根據(jù)學(xué)生的成績劃分為,,,四個等級,并繪制了不完整的兩種統(tǒng)計圖:
根據(jù)圖中提供的信息,回答下列問題:
(1)參加知識競賽的學(xué)生共有______人,并把條形統(tǒng)計圖補充完整;
(2)扇形統(tǒng)計圖中,______,______,等級對應(yīng)的圓心角為______度;
(3)小明是四名獲等級的學(xué)生中的一位,學(xué)校將從獲等級的學(xué)生中任選取2人,參加市舉辦的知識競賽,請用列表法或畫樹狀圖,求小明被選中參加區(qū)知識競賽的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,cos∠ABC=,sin∠ACB=,AC=2,分別以AB,AC為邊向△ABC形外作正方形ABGF和正方形ACDE,連接EF,點M是EF的中點,連接AM,則△AEF的面積為_____,AM的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】快遞公司為提高快遞分揀的速度,決定購買機器人來代替人工分揀,兩種型號的機器人的工作效率和價格如表:
型號 | 甲 | 乙 |
每臺每小時分揀快遞件數(shù)(件) | 1000 | 800 |
每臺價格(萬元) | 5 | 3 |
該公司計劃購買這兩種型號的機器人共10臺,并且使這10臺機器人每小時分揀快遞件數(shù)總和不少于8500件
(1)設(shè)購買甲種型號的機器人x臺,購買這10臺機器人所花的費用為y萬元,求y與x之間的關(guān)系式;
(2)購買幾臺甲種型號的機器人,能使購買這10臺機器人所花總費用最少?最少費用是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某品牌電腦銷售公司有營銷員14人,銷售部為制定營銷人員月銷售電腦定額,統(tǒng)計了這14人某月的銷售量如下(單位:臺):
銷售量 | 200 | 170 | 130 | 80 | 50 | 40 |
人數(shù) | 1 | 1 | 2 | 5 | 3 | 2 |
(1)該公司營銷員銷售該品牌電腦的月銷售平均數(shù)是 臺,中位數(shù)是 臺,眾數(shù)是 臺.
(2)銷售部經(jīng)理把每位營銷員月銷售量定為90臺,你認為是否合理?說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com