【題目】請(qǐng)將寬為3cm、長(zhǎng)為ncm的長(zhǎng)方形(n為正整數(shù))分割成若干小正方形,要求小正方形的邊長(zhǎng)是正整數(shù)且個(gè)數(shù)最少.例如,當(dāng)n5cm時(shí),此長(zhǎng)方形可分割成如右圖的4個(gè)小正方形.

請(qǐng)回答下列問(wèn)題:

1n16時(shí),可分割成幾個(gè)小正方形?

2)當(dāng)長(zhǎng)方形被分割成20個(gè)小正方形時(shí),求n所有可能的值;

3)一般地,n3時(shí),此長(zhǎng)方形可分割成多少個(gè)小正方形.

【答案】1)可分割成8個(gè)小正方形;(2n所有可能的值為605253;(3)當(dāng)n3時(shí),此長(zhǎng)方形可分割成小正方形為:當(dāng)n3k時(shí),有k個(gè)小正方形;當(dāng)n═3k+1時(shí),有(k+3)個(gè)小正方形;當(dāng)n3k+2時(shí),有(k+3)個(gè)小正方形.

【解析】

根據(jù)題意,繼續(xù)畫(huà)圖分析并總結(jié)規(guī)律,然后再解決下列問(wèn)題即可.

1)根據(jù)以上結(jié)論即可求解;

2)根據(jù)以上結(jié)論即可求解;

3)根據(jù)總結(jié)規(guī)律整理到一起即可.

解:若n=4=3×1+1時(shí),如下圖所示,此時(shí)共有4=(1+3)個(gè)小正方形

n=7=3×2+1時(shí),如下圖所示,此時(shí)共有5=(2+3)個(gè)小正方形

由上可知:當(dāng)n等于3k倍加1時(shí),小正方形的個(gè)數(shù)為(k+3)個(gè),即當(dāng)n═3k+1時(shí),有(k+3)個(gè)小正方形;

n=5=3×1+2時(shí),如下圖所示,此時(shí)共有4=(13)個(gè)小正方形

n=8=3×2+2時(shí),如下圖所示,此時(shí)共有5=(23)個(gè)小正方形

由上可知: 當(dāng)n等于3k倍加2時(shí),小正方形的個(gè)數(shù)為(k+3)個(gè),即當(dāng) n3k+2時(shí),有(k+3)個(gè)小正方形;

n=6=3×2時(shí),如下圖所示,此時(shí)共有2個(gè)小正方形

n=9=3×3時(shí),如下圖所示,此時(shí)共有3個(gè)小正方形

由上可知: 當(dāng)n等于3k倍時(shí),小正方形的個(gè)數(shù)為k個(gè),即 n3k時(shí),有k個(gè)小正方形;

1n163×51時(shí),可分割成5+3=8個(gè)小正方形;

2)當(dāng)長(zhǎng)方形被分割成20個(gè)小正方形時(shí),

n3k時(shí),此時(shí)k=20,代入解得:n=60;

n═3k+1時(shí),此時(shí)k+3=20,解得k=17,代入解得:n═52;

n3k+2時(shí),此時(shí)k+3=20,解得k=17,代入解得:n═53.

綜上所述:n所有可能的值為605253;

3)由上可知:當(dāng)n3時(shí),此長(zhǎng)方形可分割成小正方形為:

當(dāng)n3k時(shí),有k個(gè)小正方形;

當(dāng)n═3k+1時(shí),有(k+3)個(gè)小正方形;

當(dāng)n3k+2時(shí),有(k+3)個(gè)小正方形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于x的一元二次方程x2+(2k+1)x+k2+1=0有兩個(gè)不等實(shí)根

(1)求實(shí)數(shù)k的取值范圍.

(2)若方程兩實(shí)根滿足|x1|+|x2|=x1·x2,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD中,BEFC,CF2FD,AE、BF交于點(diǎn)G,連接AF,給出下列結(jié)論:AEBF; AEBF; BGGE; S四邊形CEGFSABG,其中正確的個(gè)數(shù)為( 。

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,⊙O的直徑AB和弦CD相交于點(diǎn)E,且點(diǎn)B是劣弧DF的中點(diǎn).

1)求證:EBD≌△EBF;

2)已知AE1EB5,∠DEB30°,求CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,ABCD中,E、F分別是邊AB、CD的中點(diǎn).

(1)求證:四邊形EBFD是平行四邊形;

(2)若AD=AE=2,A=60°,求四邊形EBFD的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,RtACB中,∠C90°,點(diǎn)DAC上,∠CBD=∠A,過(guò)AD兩點(diǎn)的圓的圓心OAB.

1)判斷BD所在直線與⊙O的位置關(guān)系,并證明你的結(jié)論;

2)若AE4,∠A30°,求圖中由BD、BE、弧DE圍成陰影部分面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線軸交于A,B兩點(diǎn),與軸交于點(diǎn)C.

1)請(qǐng)求出拋物線頂點(diǎn)M的坐標(biāo)(用含k的代數(shù)式表示)以及A,B兩點(diǎn)的坐標(biāo).

2)試探究BCMABC的面積比值是否不變,若不變,試求出這個(gè)比值;若改變,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,點(diǎn)F是邊BC的中點(diǎn),連接AF并延長(zhǎng)交DC的延長(zhǎng)線于點(diǎn)E,連接AC、BE.

(1)求證:AB=CE;

(2)若,則四邊形ABEC是什么特殊四邊形?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有時(shí)我們可以看到這樣的轉(zhuǎn)盤(pán)游戲:如圖所示,你只要出1元錢就可以隨意地轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán),轉(zhuǎn)盤(pán)停止時(shí)指針落在哪個(gè)區(qū)域,你就按照這個(gè)區(qū)域所示的數(shù)字相應(yīng)地順時(shí)針跳過(guò)幾格,然后按照下圖所示的說(shuō)明確定你的資金是多少.例如,當(dāng)指針指向 “2”區(qū)域時(shí)候,你就向前跳過(guò)兩個(gè)格到“5”,按獎(jiǎng)金說(shuō)明,“5”所示的資金為0.2元,你就可以得0.2.請(qǐng)問(wèn)這個(gè)游戲公平嗎?能否用你所學(xué)的知識(shí)揭示其中的秘密?

查看答案和解析>>

同步練習(xí)冊(cè)答案