【題目】如圖,在中,點(diǎn)F是邊BC的中點(diǎn),連接AF并延長(zhǎng)交DC的延長(zhǎng)線于點(diǎn)E,連接AC、BE.

(1)求證:AB=CE;

(2)若,則四邊形ABEC是什么特殊四邊形?請(qǐng)說(shuō)明理由.

【答案】(1)證明見(jiàn)解析;(2)矩形,理由見(jiàn)解析.

【解析】

(1)根據(jù)AB//CD可知∠ABF=ECF,BF=CF,AFB=CFE, 可證明△ABF≌△ECF.即可證明AB=CE.(2)根據(jù)∠AFC=2D 及外角性質(zhì)可證明AF=BF進(jìn)而證明AE=BC,即可證明四邊形ABEC是平行四邊形.

(1)FBC的中點(diǎn),

BF=CF.

∵在四邊形中,AB//CD,

∴∠ABF=ECF,

∵∠AFB=CFE,

∴△ABF≌△ECF,

AB=CE.

(2)四邊形ABEC是矩形,理由如下:

∵△ABF≌△ECF,

EF=AF,

BF=CF,

∴四邊形ABEC是平行四邊形.

∴∠ABF=∠D,

∵∠AFC=2∠D,∠AFC=∠ABF+∠BAF,

∴∠ABF=∠BAF,

∴AF=BF,

∴AE=BC,

∴四邊形ABEC是矩形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將正方形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°得到AB′C′D′,如果AB=1,點(diǎn)CC′的距離為(  )

A. B. C. 1 D. ﹣1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)代銷甲、乙兩種商品,其中甲種商品進(jìn)價(jià)為120/件,售價(jià)為130/件,乙種商品進(jìn)價(jià)為100/件,售價(jià)為150/件.

1)若商場(chǎng)用36000元購(gòu)進(jìn)這兩種商品若干,銷售完后可獲利潤(rùn)6000元,則該商場(chǎng)購(gòu)進(jìn)甲、乙兩種商品各多少件?(列方程組解答)

2)若商場(chǎng)購(gòu)進(jìn)這兩種商品共100件,設(shè)購(gòu)進(jìn)甲種商品x件,兩種商品銷售后可獲總利潤(rùn)為y元,請(qǐng)寫出yx的函數(shù)關(guān)系式(不要求寫出自變量x的范圍),并指出購(gòu)進(jìn)甲種商品件數(shù)x逐漸增加時(shí),總利潤(rùn)y是增加還是減少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)圖象軸上方的部分沿軸翻折到軸下方,圖象的其余部分保持不變,翻折后的圖象與原圖象軸下方的部分組成一個(gè)形狀的新圖象,若直線與該新圖象有兩個(gè)公共點(diǎn),則的取值范圍為_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠AOB90°,點(diǎn)CD分別在射線OA,OB上,CE是∠ACD的平分線,CE的反向延長(zhǎng)線與∠CDO的平分線交于點(diǎn)F

1)當(dāng)∠OCD56°(如圖①),試求∠F;

2)當(dāng)C,D在射線OA、OB上任意移動(dòng)時(shí)(不與點(diǎn)O重合)(如圖②),∠F的大小是否變化?若變化,請(qǐng)說(shuō)明理由若不變化求出∠F

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)M為拋物線x軸的焦點(diǎn)為A(-3,0),B(1,0),與y軸交于點(diǎn)C,連結(jié)AM,AC,點(diǎn)D為線段AM上一動(dòng)點(diǎn)(不與A重合),以CD為斜邊在CD上側(cè)作等腰RtDEC,連結(jié)AE,OE.

(1)求拋物線的解析式及頂點(diǎn)M的坐標(biāo);

(2)求解AD:OE的值;

(3)當(dāng)OEC為直角三角形時(shí),求AD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在正方形網(wǎng)格上有6個(gè)三角形:①△ABC;②△BCD;③△BDE;④△BFG;⑤△FGH;⑥△EFK.其中②⑥中與①相似的是( )

A. ②③④ B. ③④⑤ C. ④⑤⑥ D. ②③⑥

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD,ABECDF為直角三角形,∠AEB=CFD=90°,AE=CF=5,BE=DF=12,則EF的長(zhǎng)是( 。

A. 7 B. 8 C. 7 D. 7

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)的圖象如圖所示,給出以下結(jié)論:;②;③;④.其中所有正確結(jié)論的序號(hào)是(

A. ③④ B. ②③ C. ①④ D. ①②③

查看答案和解析>>

同步練習(xí)冊(cè)答案