【題目】如圖,已知A(1,5),直線l1:y=x,直線l2過(guò)原點(diǎn)且與x軸正半軸成60°夾角,在l1上有一動(dòng)點(diǎn)M,在l2上有一動(dòng)點(diǎn)N,連接AM、MN,則AM+MN的最小值為_____.
【答案】
【解析】
根據(jù)“AAS”可證△AOC≌BOD,利用全等三角形對(duì)應(yīng)邊相等可得OD=OC=5,BD=AC=1,作NE⊥x軸,BF⊥NE,可得∠BNF=60°,設(shè)BN=2x,則NF=x,BF=, 可得OE=OD-DE=5-, NE =NF+EF=x+1,利用tan∠NOE==,解出x的值即可.
解:如圖,做點(diǎn)A關(guān)于l1的對(duì)稱(chēng)點(diǎn)B,過(guò)BN⊥l2,交l1于一點(diǎn)即為M,此時(shí),線段BN的長(zhǎng)即為AM+MN的最小值,
∴AO=BO,
作AC⊥y軸,BD⊥x軸,
易證△AOC≌BOD(AAS),
∵A(1,5)
∴B(5,1)
∴OD=5,BD=1,
作NE⊥x軸,BF⊥NE,
∵直線L2與x軸夾角為60°,
∴∠BNF=60°,
設(shè)BN=2x,則NF=x,BF=
∴OE=OD-DE=5-, NE =NF+EF=x+1,
tan∠NOE===tan60°=,
解得x=,
∴BN=2x=.
即得AM+MN的最小值為.
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方形ABCD的邊長(zhǎng)為3,點(diǎn)E,F(xiàn)分別在射線DC,DA上運(yùn)動(dòng),且DE=DF.連接BF,作EH⊥BF所在直線于點(diǎn)H,連接CH.
(1)如圖1,若點(diǎn)E是DC的中點(diǎn),CH與AB之間的數(shù)量關(guān)系是 ;
(2)如圖2,當(dāng)點(diǎn)E在DC邊上且不是DC的中點(diǎn)時(shí),(1)中的結(jié)論是否成立?若成立給出證明;若不成立,說(shuō)明理由;
(3)如圖3,當(dāng)點(diǎn)E,F(xiàn)分別在射線DC,DA上運(yùn)動(dòng)時(shí),連接DH,過(guò)點(diǎn)D作直線DH的垂線,交直線BF于點(diǎn)K,連接CK,請(qǐng)直接寫(xiě)出線段CK長(zhǎng)的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“中國(guó)漢字聽(tīng)寫(xiě)大會(huì)”是由中央電視臺(tái)和國(guó)家語(yǔ)言文字工作委員會(huì)聯(lián)合主辦的節(jié)目,希望通過(guò)節(jié)目的播出,能吸引更多的人關(guān)注對(duì)漢字文化的學(xué)習(xí).某校也開(kāi)展了一次“漢字聽(tīng)寫(xiě)”比賽,每位參賽學(xué)生聽(tīng)寫(xiě)40個(gè)漢字.比賽結(jié)束后隨機(jī)抽取部分學(xué)生的聽(tīng)寫(xiě)結(jié)果,按聽(tīng)寫(xiě)正確的漢字個(gè)數(shù)x繪制成了以下不完整的統(tǒng)計(jì)圖.
根據(jù)以上信息回答下列問(wèn)題:
(1)本次共隨機(jī)抽取了 名學(xué)生進(jìn)行調(diào)查,聽(tīng)寫(xiě)正確的漢字個(gè)數(shù)x在 范圍的人數(shù)最多;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)各組的組中值如下表所示.若用各組的組中值代表各組每位學(xué)生聽(tīng)寫(xiě)正確的漢字個(gè)數(shù),求被調(diào)查學(xué)生聽(tīng)寫(xiě)正確的漢字個(gè)數(shù)的平均數(shù);
聽(tīng)寫(xiě)正確的漢字個(gè)數(shù)x | 組中值 |
1≤x<11 | 6 |
11≤x<21 | 16 |
21≤x<31 | 26 |
31≤x<41 | 36 |
(4)該校共有1350名學(xué)生,如果聽(tīng)寫(xiě)正確的漢字個(gè)數(shù)不少于21個(gè)定為良好,請(qǐng)你估計(jì)該校本次“漢字聽(tīng)寫(xiě)”比賽達(dá)到良好的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在學(xué)校開(kāi)展的數(shù)學(xué)活動(dòng)課上,小明和小剛制作了一個(gè)正三樓錐(質(zhì)量均勻,四個(gè)面完全相同),并在各個(gè)面上分別標(biāo)記數(shù)字1,2,3,4,游戲規(guī)則如下每人投擲三棱錐兩次,并記錄底面的數(shù)字,如果兩次所擲數(shù)字的和為單數(shù),那么算小明贏,如果兩歡所擲數(shù)字的和為偶數(shù),那么算小明贏;
(1)請(qǐng)用列表或者面樹(shù)狀圍的方法表示上述游戲中的所有可能結(jié)果.
(2)請(qǐng)分別隸出小明和小剛能贏的概率,并判新游戲的公平性.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某住宅小區(qū)在施工過(guò)程中留下了一塊空地(圖中的四邊形ABCD),經(jīng)測(cè)量,在四邊形ABCD中,AB=3m,BC=4m,CD=12m,DA=13m,∠B=90°,連接AC.
(1)△ACD是直角三角形嗎?為什么?
(2)小區(qū)為美化環(huán)境,欲在空地上鋪草坪,已知草坪每平方米100元,試問(wèn)鋪滿這塊空地共需花費(fèi)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABC,AC⊥CB,AC=15,AB=25,點(diǎn)D為斜邊上動(dòng)點(diǎn)。
(1)如圖,過(guò)點(diǎn)D作DE⊥AB交CB于點(diǎn)E,連接AE,當(dāng)AE平分∠CAB時(shí),求CE;
(2)如圖,在點(diǎn)D的運(yùn)動(dòng)過(guò)程中,連接CD,若△ACD為等腰三角形,求AD。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線y=kx+3和x軸、y軸的交點(diǎn)分別為B、C,∠OBC=30°,點(diǎn)A的坐標(biāo)是(,0),另一條直線經(jīng)過(guò)點(diǎn)A、C.
(1)求點(diǎn)B的坐標(biāo)及k的值;
(2)求證:AC⊥BC;
(3)點(diǎn)M為直線BC上一點(diǎn)(與點(diǎn)B不重合),設(shè)點(diǎn)M的橫坐標(biāo)為x,△ABM的面積為S.
①求S與x的函數(shù)關(guān)系式;
②當(dāng)S=6時(shí),求點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ACB中,∠ACB=90°,AC=BC,點(diǎn)C的坐標(biāo)為(﹣2,0),點(diǎn)A的坐標(biāo)為(﹣6,3),求點(diǎn)B的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知AB是⊙O的直徑,弦CD⊥AB于H,過(guò)CD延長(zhǎng)線上一點(diǎn)E作⊙O的切線交AB的延長(zhǎng)線于F,切點(diǎn)為G,連接AG交CD于K.
(1)如圖1,求證:KE=GE;
(2)如圖2,連接CABG,若∠FGB=∠ACH,求證:CA∥FE;
(3)如圖3,在(2)的條件下,連接CG交AB于點(diǎn)N,若sinE=,AK=,求CN的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com