【題目】如圖,平行四邊形ABCD的對(duì)角線AC、BD交于點(diǎn)O,點(diǎn)E在邊CB的延長(zhǎng)線上,且∠EAC=90°,AE2=EBEC

1)求證:四邊形ABCD是矩形;

2)延長(zhǎng)DB、AE交于點(diǎn)F,若AF=AC,求證:AE=BF

【答案】(1)見解析;(2)見解析

【解析】

1)根據(jù)AE2=EBEC證明△AEB∽△CEA,即可得到∠EBA=EAC=90°,從而說明平行四邊形ABCD是矩形;

2)根據(jù)(1)中△AEB∽△CEA可得,再證明△EBF∽△BAF可得,結(jié)合條件AF=AC,即可證AE=BF

證明:(1)∵AE2=EBEC

又∵∠AEB=CEA

∴△AEB∽△CEA

∴∠EBA=EAC

而∠EAC=90°

∴∠EBA=EAC=90°

又∵∠EBA+CBA=180°

∴∠CBA=90°

而四邊形ABCD是平行四邊形

∴四邊形ABCD是矩形

即得證.

2)∵△AEB∽△CEA

,∠EAB=ECA

∵四邊形ABCD是矩形

OB=OC

∴∠OBC=ECA

∴∠EBF=OBC=ECA=EAB

即∠EBF=EAB

又∵∠F=F

∴△EBF∽△BAF

AF=AC

BF=AE

AE=BF得證.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長(zhǎng)方形ABCD中,AB=CD=5厘米,AD=BC=4厘米.動(dòng)點(diǎn)PA出發(fā),以1厘米/秒的速度沿A→B運(yùn)動(dòng),到B點(diǎn)停止運(yùn)動(dòng);同時(shí)點(diǎn)QC點(diǎn)出發(fā),以2厘米/秒的速度沿C→B→A運(yùn)動(dòng),到A點(diǎn)停止運(yùn)動(dòng).設(shè)P點(diǎn)運(yùn)動(dòng)的時(shí)間為t秒(t0),

1)當(dāng)點(diǎn)QBC邊上運(yùn)動(dòng)時(shí),t為何值,AP=BQ;

2)當(dāng)t為何值時(shí),SADP=SBQD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某書店開展優(yōu)惠售書活動(dòng),一次購(gòu)書定價(jià)不超過200元的打九折;一次購(gòu)書定價(jià)超過200元的,其中200元按九折計(jì)算,超過200元的部分打八折.小麗挑選了幾本喜愛的書,計(jì)算定價(jià)后,準(zhǔn)備支付144元,遇見同學(xué)小芳也在買書,計(jì)算小芳購(gòu)書的定價(jià)后,小麗對(duì)小芳說:我們獨(dú)自付款,都只能享受九折,合在一-起付款,按今天的活動(dòng)一共可優(yōu)惠 48元.請(qǐng)根據(jù)以上內(nèi)容解答下列問題:

1)小麗購(gòu)書的定價(jià)是____

2)列方程求解小芳購(gòu)書的定價(jià).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,,,點(diǎn)在邊上(與、不重合),四邊形為正方形,過點(diǎn),交的延長(zhǎng)線于點(diǎn),連接,交于點(diǎn),對(duì)于下列結(jié)論:①;②四邊形是矩形;③.其中正確的是(

A.①②③B.①②C.①③D.②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙OABC的外接圓,AC為直徑,BD=BA,BEDCDC的延長(zhǎng)線于點(diǎn)E

(1) 求證:BE是⊙O的切線

(2) EC=1,CD=3,求cosDBA

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小靚用七巧板拼成一幅裝飾圖,放入長(zhǎng)方形ABCD內(nèi),裝飾圖中的三角形頂點(diǎn)E,F分別在邊ABBC上,三角形①的邊GD在邊AD上,若圖1正方形中MN=1,則CD=____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A、B、C、D、E在同一直線上,且ACBDE是線段BC的中點(diǎn).

(1)點(diǎn)E是線段AD的中點(diǎn)嗎?說明理由;

(2)當(dāng)AD=10,AB=3時(shí),求線段BE的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用適當(dāng)?shù)姆椒ń庀铝蟹匠?/span>

1 2

3 4

5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD是平行四邊形,要使它成為菱形,那么需要添加的條件可以是( )

A.AC=BD B.AB=AC C.ABC=90°D.ACBD

查看答案和解析>>

同步練習(xí)冊(cè)答案