【題目】如圖,正方形的邊長為10,,,連接,則線段的長為( )
A.B.C.D.
【答案】B
【解析】
延長DH交AG于點E,利用SSS證出△AGB≌△CHD,然后利用ASA證出△ADE≌△DCH,根據(jù)全等三角形的性質(zhì)求出EG、HE和∠HEG,最后利用勾股定理即可求出HG.
解:延長DH交AG于點E
∵四邊形ABCD為正方形
∴AD=DC=BA=10,∠ADC=∠BAD=90°
在△AGB和△CHD中
∴△AGB≌△CHD
∴∠BAG=∠DCH
∵∠BAG+∠DAE=90°
∴∠DCH+∠DAE=90°
∴CH2+DH2=82+62=100= DC2
∴△CHD為直角三角形,∠CHD=90°
∴∠DCH+∠CDH=90°
∴∠DAE=∠CDH,
∵∠CDH+∠ADE=90°
∴∠ADE=∠DCH
在△ADE和△DCH中
∴△ADE≌△DCH
∴AE=DH=6,DE=CH=8,∠AED=∠DHC=90°
∴EG=AG-AE=2,HE= DE-DH=2,∠GEH=180°-∠AED=90°
在Rt△GEH中,GH=
故選B.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)的圖象開口向上,圖象經(jīng)過點(-1,2)和(1,0),且與y
軸相交于負半軸。給出四個結(jié)論:①;②;③;④ ,其中正確結(jié)論的序
號是___________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的高,BE平分∠ABC交AC邊于E,兩線相交于F點.
(1)若∠BAC=60°,∠C=70°,求∠AFB的大;
(2)若D是BC的中點,∠ABE=30°,求證:△ABC是等邊三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=3x與雙曲線y= (k≠0,且x>0)交于點A,點A的橫坐標是1.
(1)求點A的坐標及雙曲線的解析式;
(2)點B是雙曲線上一點,且點B的縱坐標是1,連接OB,AB,求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關(guān)于的一元二次方程x2-(k+2)x+k-1=0
(1)若方程的一個根為 -1,求的值和方程的另一個根;
(2)求證:不論取何值,該方程都有兩個不相等的實數(shù)根.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某辦公樓AB的后面有一建筑物CD,當光線與地面的夾角是22°時,辦公樓在建筑物的墻上留下高3米的影子CE,而當光線與地面夾角是45°時,辦公樓頂A在地面上的影子F與墻角C有27米的距離(B,F,C在一條直線上).
(1)求辦公樓AB的高度;
(2)若要在A,E之間掛一些彩旗,請你求出A,E之間的距離.
(參考數(shù)據(jù):sin22°≈,cos22°≈,tan22°≈)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列結(jié)論中,錯誤的有( )
①在Rt△ABC中,已知兩邊長分別為3和4,則第三邊的長為5;
②△ABC的三邊長分別為AB,BC,AC,若+=,則∠A=90°;
③在△ABC中,若∠A:∠B:∠C=1:5:6,則△ABC是直角三角形;
④若三角形的三邊長之比為3:4:5,則該三角形是直角三角形.
A. 0個 B. 1個 C. 2個 D. 3個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,點O在斜邊AB上,以O為圓心,OB為半徑作圓,分別與BC,AB相交于點D,E,連結(jié)AD.已知∠CAD=∠B.
(1)求證:AD是⊙O的切線.
(2)若BC=8,tanB=,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線與軸,軸分別交于,兩點,若將直線向右平移個單位得到直線,與軸,軸分別交于,兩點.
(1)求點的坐標;
(2)如圖1,若點是直線上一動點,且,軸,連接,求的最小值及此時點的坐標;
(3)如圖2,將線段繞點順時針旋轉(zhuǎn),得到線段,延長線段得到直線,線段在直線上移動,當以點、、構(gòu)成的三角形是等腰三角形時,直接寫出點的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com