【題目】如圖,直線l1、l2、l3分別過正方形ABCD的三個頂點(diǎn)A,B,D,且相互平行,若l1與l2的距離為1,l2與l3的距離為1,則該正方形的面積是

【答案】5
【解析】解:過點(diǎn)B作BE⊥l1于E,過點(diǎn)D作DF⊥l1于F,
∵l1與l2的距離為1,l2與l3的距離為1,l1∥l2∥l3 ,
∴DF=2,BE=1,∠DFA=∠AEB=90°,
∴∠ADF+∠DAF=90°,
∵四邊形ABCD是正方形,
∴AD=AB,∠DAB=90°,
∴∠DAF+∠BAE=90°,
∴∠ADF=∠BAE,
在△ADF和△BAE中,
,
∴△ADF≌△BAE(AAS)
∴AE=DF=2,
在Rt△ABE中,AB2=AE2+BE2=12+22=5,
∴S正方形ABCD=5.
所以答案是:5.
【考點(diǎn)精析】掌握平行線之間的距離和勾股定理的概念是解答本題的根本,需要知道兩條平行線的距離:兩條直線平行,從一條直線上的任意一點(diǎn)向另一條直線引垂線,垂線段的長度,叫做兩條平行線的距離;直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在矩形ABCD中,M、N分別是邊AD、BC的中點(diǎn),E、F分別是線段BM、CM的中點(diǎn).
(1)求證:△ABM≌△DCM;
(2)判斷四邊形MENF是什么特殊四邊形,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,AC=8,BC=6,D是AB的中點(diǎn),點(diǎn)E在邊AC上,將△ADE沿DE翻折,使得點(diǎn)A落在點(diǎn)A'處,當(dāng)A'E⊥AC時,A'B=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在ABCD中,過點(diǎn)D作DE⊥AB于點(diǎn)E,點(diǎn)F在邊CD上,DF=BE,連接AF,BF.
(1)求證:四邊形DEBF是矩形;
(2)若AF平分∠DAB,AE=3,BF=4,求ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把直角梯形ABCD沿AD方向平移到梯形EFGH的位置,若HG=24 cm,WG=8 cm,CW=6 cm,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,攔水壩的橫斷面為梯形ABCD,AB∥CD,壩頂寬DC為6米,壩高DG為2米,迎水坡BC的坡角為30°,壩底寬AB為(8+2 )米.
(1)求背水坡AD的坡度;
(2)為了加固攔水壩,需將水壩加高2米,并且保持壩頂寬度不變,迎水坡和背水坡的坡度也不變,求加高后壩底HB的寬度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“五一”小長假,小穎和小梅兩家計劃從“北京天安門”“三亞南山”“內(nèi)蒙古大草原”三個景區(qū)中任意選擇一景區(qū)游玩,小穎和小梅制作了如下三張質(zhì)地大小完全相同的卡片,背面朝上洗勻后各自從中抽去一張來確定游玩景區(qū)(第一人抽完放回洗勻后另一人再抽去),則兩人抽到同一景區(qū)的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB∥CD,∠DCE=118°,∠AEC的角平分線EF與GF相交于點(diǎn)F,∠BGF=132°,則∠F的度數(shù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】LED燈具有環(huán)保節(jié)能、投射范圍大、無頻閃、使用壽命較長等特點(diǎn),在日常生活中,人們更傾向于LED燈的使用,某校數(shù)學(xué)興趣小組為了解LED燈泡與普通白熾燈泡的銷售情況,進(jìn)行了市場調(diào)查:某商場購進(jìn)一批30瓦的LED燈泡和普通白熾燈泡進(jìn)行銷售,其進(jìn)價與標(biāo)價如下表:

LED燈泡

普通白熾燈泡

進(jìn)價(元)

45

25

標(biāo)價(元)

60

30


(1)該商場購進(jìn)了LED燈泡與普通白熾燈泡共300個,LED燈泡按標(biāo)價進(jìn)行銷售,而普通白熾燈泡打九折銷售,當(dāng)銷售完這批燈泡后可以獲利3200元,求該商場購進(jìn)LED燈泡與普通白熾燈泡的數(shù)量分別為多少個?
(2)由于春節(jié)期間熱銷,很快將兩種燈泡銷售完,若該商場計劃再次購進(jìn)兩種燈泡120個,在不打折的情況下,請問如何進(jìn)貨,銷售完這批燈泡時獲利最多且不超過進(jìn)貨價的30%,并求出此時這批燈泡的總利潤為多少元?

查看答案和解析>>

同步練習(xí)冊答案