【題目】已知:如圖,在RtACB中,∠C=90°BC=3cm,AC=3cm,點(diǎn)PB點(diǎn)出發(fā)沿BA方向向點(diǎn)A勻速運(yùn)動,速度為2cm/s;點(diǎn)QA點(diǎn)出發(fā)沿AC方向向點(diǎn)C勻速運(yùn)動,速度為cm/s;若設(shè)運(yùn)動的時(shí)間為t(s)(0t3),解答下列問題:

(1)如圖①,連接PC,當(dāng)t為何值時(shí)△APC∽△ACB,并說明理由;

(2)如圖②,當(dāng)點(diǎn)P,Q運(yùn)動時(shí),是否存在某一時(shí)刻t,使得點(diǎn)P在線段QC的垂直平分線上,請說明理由;

(3)如圖③,當(dāng)點(diǎn)PQ運(yùn)動時(shí),線段BC上是否存在一點(diǎn)G,使得四邊形PQGB為菱形?若存在,試求出BG長;若不存在請說明理由.

【答案】(1)t=,理由見解析;(2)存在,t=1,理由見解析;(3)不存在,理由見解析.

【解析】

1)結(jié)合直角三角形性質(zhì),由△APC∽△ACB,得;(2)過點(diǎn)PPMAC,根據(jù)線段垂直平分線性質(zhì),求QM,AM的表達(dá)式,證△APM∽△ABC,得 ,;(3)假設(shè)線段BC上是存在一點(diǎn)G,使得四邊形PQGB為平行四邊形,則PQBGPQ=BG,由△APQ∽△ABC,得BP=2t=3,故PQ≠BP.

(1)RtACB中,∠C=90°,AC=3cm,BC=3cm

AB=6,

由運(yùn)動知,BP=2t,AQ= ,

AP=62t,

∵△APC∽△ACB

t=

(2)存在,

理由:如圖②,由運(yùn)動知,BP=2t,AQ=,

AP=62t,CQ= ,

∵點(diǎn)PCQ的垂直平分線上,

過點(diǎn)PPMAC,

QM=CM=

AM=AQ+QM= =(3+t)

∵∠ACB=90°,∴PMBC

∴△APM∽△ABC

∴解得t=1;

(3)不存在

理由:由運(yùn)動知,BP=2t,,

AP=62t

假設(shè)線段BC上是存在一點(diǎn)G,使得四邊形PQGB為平行四邊形,

PQBG,PQ=BG,

∴△APQ∽△ABC,

,

BP=2t=3

PQ≠BP,

∴平行四邊形PQGB不可能是菱形.即:線段BC上不存在一點(diǎn)G,使得四邊形PQGB為菱形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 如圖,四邊形ABCD內(nèi)接于以BC為直徑的圓,圓心為O,且AB=AD,延長CB、DA交于P,過C點(diǎn)作PD的垂線交PD的延長線于E,且PB=BO,連接OA

1)求證:OACD;

2)求線段BCDC的值;

3)若CD=18,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,我們定義直線y=ax-a為拋物線y=ax2+bx+ca、b、c為常數(shù),a≠0)的衍生直線;有一個(gè)頂點(diǎn)在拋物線上,另有一個(gè)頂點(diǎn)在y軸上的三角形為其衍生三角形.已知拋物線與其衍生直線交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與x軸負(fù)半軸交于點(diǎn)C

1)填空:該拋物線的衍生直線的解析式為 ,點(diǎn)A的坐標(biāo)為 ,點(diǎn)B的坐標(biāo)為 ;

2)如圖,點(diǎn)M為線段CB上一動點(diǎn),將ACMAM所在直線為對稱軸翻折,點(diǎn)C的對稱點(diǎn)為N,若AMN為該拋物線的衍生三角形,求點(diǎn)N的坐標(biāo);

3)當(dāng)點(diǎn)E在拋物線的對稱軸上運(yùn)動時(shí),在該拋物線的衍生直線上,是否存在點(diǎn)F,使得以點(diǎn)A、C、E、F為頂點(diǎn)的四邊形為平行四邊形?若存在,請直接寫出點(diǎn)EF的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x的方程的解為整數(shù),且不等式組無解,則這樣的非負(fù)整數(shù)a有(  )

A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一天晚上,小穎由路燈A下的B處向正東走到C處時(shí),測得影子CD的長為1米.當(dāng)她繼續(xù)向正東走到D處時(shí),測得此時(shí)影子DE的一端E到路燈A的仰角為45°.已知小穎的身高為1.5米,那么路燈AB的高度是多少米?(

A.4B.4.5C.5D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一艘運(yùn)沙船裝載著5000m3沙子,到達(dá)目的地后開始卸沙,設(shè)平均卸沙速度為v(單位:m3/小時(shí)),卸沙所需的時(shí)間為t(單位:小時(shí)).

1)求v關(guān)于t的函數(shù)表達(dá)式,并用列表描點(diǎn)法畫出函數(shù)的圖象;

2)若要求在20小時(shí)至25小時(shí)內(nèi)(含20小時(shí)和25小時(shí))卸完全部沙子,求卸沙的速度范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形內(nèi)作正三角形,連接并延長交于F,則_______________,若,則長度為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖象經(jīng)過原點(diǎn)及點(diǎn)( ),且圖象與x軸的另一交點(diǎn)到原點(diǎn)的距離為1,求該二次函數(shù)解析式。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1是小區(qū)常見的漫步機(jī),當(dāng)人踩在踏板上,握住扶手,像走路一樣抬腿,就會帶動踏板連桿繞軸旋轉(zhuǎn).如圖2,從側(cè)面看,踏板靜止DE上的線段AB重合,測得BE長為0.21m,當(dāng)踏板連桿繞著A旋轉(zhuǎn)到AC處時(shí),測得∠CAB42°,點(diǎn)C到地面的距離CF長為0.52m,當(dāng)踏板連桿繞著點(diǎn)A旋轉(zhuǎn)到AG處∠GAB30°時(shí),求點(diǎn)G距離地面的高度GH的長.(精確到0.1m,參考數(shù)據(jù):sin42°≈0.67,cos42°≈0.74tan42°≈0.90,

查看答案和解析>>

同步練習(xí)冊答案