【題目】如圖,AB∥CD,∠A=50°,∠C=45°,求∠P的度數.
下面提供三種思路:
(1)過P作FG∥AB
(2)延長AP交直線CD于M;
(3)延長CP交直線AB于N.
請選擇兩種思路,求出∠P的度數.
【答案】∠APC=95°,方法見解析.
【解析】
(1)過P作PG∥AB,利用平行線的性質以及三角形外角性質進行計算即可.
(2)延長AP交直線CD于M,利用平行線的性質以及三角形外角性質進行計算即可.
(3)延長CP交直線AB于N,利用平行線的性質以及三角形外角性質進行計算即可.
解:(1)過P作PG∥AB,
∵AB∥CD,
∴AB∥CD∥PG,
∴∠A=∠APG,∠C=∠CPG,
∴∠APC=APG+∠CPG=∠A+∠C=50°+45°=95°;
(2)延長AP交直線CD于M;
∵AB∥CD,
∴∠A=∠AMC=50°,
又∵∠C=45°,
∴∠APC=∠AMC+∠C=50°+45°=95°;
(3)延長CP交直線AB于N.
∵AB∥CD,
∴∠C=∠ANC=45°,
又∵∠A=50°,
∴∠APC=∠ANC+∠A=45°+50°=95°.
科目:初中數學 來源: 題型:
【題目】小明是個愛動腦筋的學生,在學習了解直角三角形以后,一天他去測量學校的旗桿DF的高度,此時過旗桿的頂點F的陽光剛好過身高DE為1.6米的小明的頭頂且在他身后形成的影長DC=2米.
(1)若旗桿的高度FG是a米,用含a的代數式表示DG.
(2)小明從點C后退6米在A的測得旗桿頂點F的仰角為30°,求旗桿FG的高度.(點A、C、D、G在一條直線上, ,結果精確到0.1)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,∠BAC=∠ABD=90°,AC=BD,點O是AD,BC的交點,點E是AB的中點.
(1)圖中有哪幾對全等三角形?請寫出來;
(2)試判斷OE和AB的位置關系,并給予證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AC=BC,D在BC的延長線上,∠ABC與∠ACD的平分線相交于點P,則下列結論中不一定正確的是( )
A. ∠ACD=2∠A B. ∠A=2∠P C. BP⊥AC D. BC=CP
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】從邊長為a的正方形中剪掉一個邊長為b的正方形(如圖1),然后將剩余部分拼成一個長方形(如圖2).
(1)圖1中陰影部分面積為______,圖2中陰影部分面積為_____,對照兩個圖形的面積可以驗證________公式(填公式名稱)請寫出這個乘法公式________.
(2)應用(1)中的公式,完成下列各題:
①已知x2﹣4y2=15,x+2y=3,求x﹣2y的值;
②計算:(2+1)(22+1)(24+1)(28+1)……(264+1)+1.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABO.
(1)點A關于x軸對稱的點的坐標為_________,點B關于y軸對稱的點的坐標為_________;
(2)判斷△ABO的形狀,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,我們把一個半圓與拋物線的一部分圍成的封閉圖形稱為“果圓”.如果一條直線與果圓只有一個交點,則這條直線叫做果圓的切線.已知A、B、C、D四點為果圓與坐標軸的交點,E為半圓的圓心,拋物線的解析式為y=x2﹣2x﹣3,AC為半圓的直徑.
(1)分別求出A、B、C、D四點的坐標;
(2)求經過點D的果圓的切線DF的解析式;
(3)若經過點B的果圓的切線與x軸交于點M,求△OBM的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】用正方形硬紙板做三棱柱盒子,每個盒子由3個矩形側面和2個正三角形底面組成。硬紙板以如圖兩種方式裁剪(裁剪后邊角料不再利用)
A方法:剪6個側面; B方法:剪4個側面和5個底面。
現有19張硬紙板,裁剪時張用A方法,其余用B方法。
(1)用的代數式分別表示裁剪出的側面和底面的個數;
(2)若裁剪出的側面和底面恰好全部用完,問能做多少個盒子?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com